COORDINATE SYSTEMS ON THE EARTH ELLIPSOID AND ON THE MAPS

INFORMATIONS

practical lesson, attendance compulsory Online: Teams, temporarily Thursday 1pm Face to face: Monday 1pm, room 7.87 Consultation: temporarily Monday 6pm (as agreed if it is necessary) Canvas (canvas.elte.hu) Lecture notes http://mercator.elte.hu/~gyorffy/jegyzete/MapProjGIS/MapProjGIS.html Written examination

Concept of coordinates and coordinate systems in the geometry

Given a set of geometric points

Coordinate(s) – numbers identifying the points of the set

Coordinate system (in the geodesy it is called rather **reference system**) – a prescription: how to assign the coordinate(s) to the points of the set

Illustrative example – the points of the set are identified by serial numbers

 In the field of geodesy and cartography, the coordinate(s) should refer to the geographic location of the points

Control point 1 (Lágymányos Campus Northem Building sun physics terrace centre point)

Geographic coordinates:

	Φ	Λ
WGS-84	47° 28'	19° <u>3</u> '
	29.262"	43.303"
	(50.00)	100.01
GK-S42(Krasovsky)	47° 28'	19° <u>3</u> '
	30.496"	49.135"
HD72(IUGG67)	47° 28'	19° 3'
	30.206"	47.2824"
HD1909(Bessel)	47° 28'	19° 3'
	26.076"	49.3709"

Height above ellipsoid=187.575 m

Map coordinates:

	Y	X
EOV	651097.685	236759.995
	m	m
(UTM-	(353975.846	(5259748.201)
WGS84)	m)	
Rn	-1097 61 m	1345 08 m
sztereo	-1027.01 m	1045.00 III

Height above geoid=143.755 m

SYLLABUS

- A) Mapping the Earth's surface onto a plane fundamentals
- Basic concepts of coordinates and coordinate systems in the geometry
- Elementary geometric coordinate systems
- Approaching the Earth's surface by reference surface. The basic properties of ellipsoid of revolution.
- B) Earth coordinates
- Spatial rectangular, geographic and superficial polar coordinate systems. Metacoordinates
- Transformations among diverse coordinate systems on the spherical and ellipsoidal surface
- Geodesic datum, approaching sphere
- The transformation of the geographic coordinates among different reference systems
- C) Map coordinates
- Map projections in general, map distortions
- Azimuthal projections
 - Oblique azimuthal projections and their cartographic application
- Cylindrical projections
 - Oblique cylindrical projections and their cartographic application
 - Transverse cylindrical projections and their cartographic application
- The Gauss-Krüger and UTM projections
- Conical projections and their cartographic application
- Conversions among coordinates of diverse map projections
- D) Positioning and reporting systems (GEOREF, MGRS)

The geometric principle of representation on maps

- The curved earth surface with its objects 3D figure
- It is represented on plane (paper- or screen map) 2D figure

 The points of the earth's surface and its objects are located with earth or map coordinates on these *continuous*, *regular* surfaces which can be described by a *mathematical formula* or *series*. The mathematical relationship between the two coordinates is *injective (one-to-one)*, it is given by a *twice continuously differentiable* mapping (a so-called map projection) and can be described by a *mathematical formula* or *series*.

Injective mapping or one to one mapping

sequence:	
1, 3, 5, 7,	1, ½, ¼, 1/8,
series:	
1+3+5+7+	1+1/2+1/4+1/8+

Elementary geometric coordinate systems on plane, in space and on surface of revolution

Elementary coordinate systems on plane (1):

planar **rectangular** (Cartesian) coordinate system:

Elementary coordinate systems on plane (2): planar **polar** coordinate system

Elementary coordinate systems in space (1): spatial **rectangular** (Cartesian) coordinate system

Elementary coordinate systems in space (2): spatial **polar c**oordinate system

(the angle λ is directed from the direction of the polar axis **counterclockwise**)

Superficial polar coordinate system on surface of revolution

 ρ **polar distance**: the length of the shortest arc connecting the origin O and the point P on the surface ("geodetic line")

the **polar angle** (the **azimuth** α) is directed **counterclockwise**

- What is the greatest angular difference △Φ (in seconds) among the geographic latitudes of the Control point 1 referring to different reference systems?
- How long longitude line arc s corresponds to this angular difference on a sphere with the radius of R=6 378 000m?