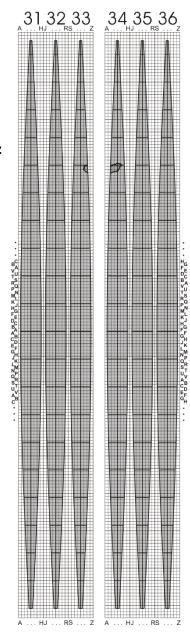
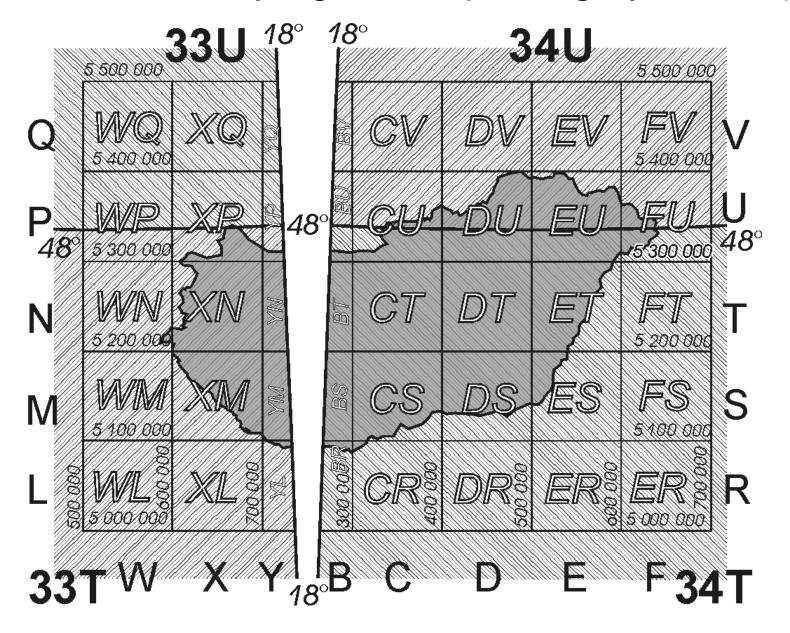
Lesson_10_A


- Location identifying and reporting systems:
 - Military Drid Reference System (MGRS)
 - World Geographic Reference System (GEOREF)

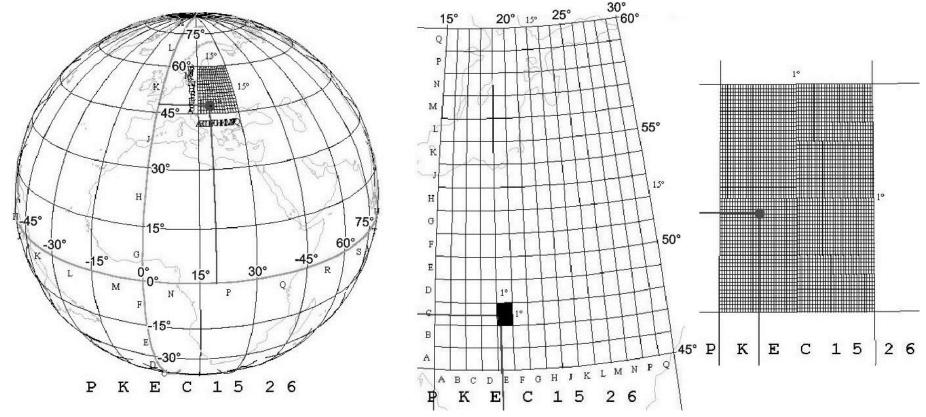
Location identifying and reporting systems (1)


The MGRS (Military Grid Reference System) identifying and reporting location system assigns a code ("geocode") to every geographic point and identifies it with an accuracy of 1 meter, for military or navigation purposes. All UTM zones of 6° are covered by an 800 km wide grid and they are grouped in set of three. The 100 km wide columns in this grid are denoted by A–Z (I and O are removed). The 100 km wide rows are denoted in the zones with odd serial number by A–V and even serial number by F–V, A–E (I and O are removed), from the equator to the North Pole 5 times.

The MGRS identifier is composed of three parts:

- the identifier of the *geographic quadrangle* of 6°x8° (serial number of the zone + key-letter of the band, e.g. 34T);
- the identifier of the *square* of 100x100 km (key letter of the column + key-letter of the row, e.g. CT)
- the *last five numbers of the UTM coordinates* rounded to meters, inside of the square of 100x100 km (coordinate Y + coordinate X, alltogether 10 digits, e.g. 34T CT 53975 59748).

Location identifying and reporting systems (2)


Location identifying and reporting systems (3)

The World Geographic Reference system (GEOREF) location identifying system is based on Earth's coordinates. It is a *search network* partitioning the Earth surface into even smaller *geographic quadrangles* by which a small territory can be appointed and identified.

- The Earth is divided up into 24 congruent ellipsoidal lunes (bounded by meridians with longitude differences of 15°) marked from the Date Line eastwards by the letters from A to Z (omitting I and O).
- Every such lune is partitioned into 12 geographic quadrangles with latitude differences of 15° marked from the South Pole northwards from A to M (omitting I). E.g. Hungary is located in the **15°x15°quadrangle** marked by PK.
- The fields of 15°x15° are split up into **subfields of 1°x1°.**
- The column of 1° is marked eastwards from A to Q (omitting I and O);
- The row of 1° is marked northwards from A to Q (omitting I and O), too. E.g. the 1°x1° subfield of Budapest (~47.5°N,~19°E) is marked by EC in PK.
- The subfields of 1°x1° are partitioned into **sub-subfields of 1'x1'** which are identified by the geographic coordinates of their southwestern corner of the sub-subfield rounded to minutes. E.g. the sub-subfield of Liszt Ferenc Airport 2 (ϕ =47°26'22"N, λ =19°15'43"E) is: PK EC 15 26 (or using the first or second decimal of the minutes: PK EC 1572 2637).

Location identifying and reporting systems (4)

The GEOREF is used by the international aeronavigation for location of airports and reporting the position of aeroplanes.

Example:

Istanbul Atatürk Airport Φ =40° 58′ 57.1980′; Λ =28° 49′ 14.9844′ (WGS84) UTM Easting=653178.53m; UTM Northing= 4538417.06m Asked: the MGRS and the GEOREF identifiers.