
Lesson 3

•Meridian on the ellipsoid, meridian radius of 
curvature M

•Geometric dimensions of the graticule lines 
and the notable parts of ellipsoidal surface

• Transformations between the spatial 
rectangular and geographic coordinates



The meridians of the ellipsoid

The meridian is a half-ellipse with semi-
-axes a and b. The radius r of osculating 
circle of this ellipse, belonging to the point 

P0 with latitude F0 is needed.

The formula for the meridian arc as 
function of r :

The formula of the osculating circle with radius  r and with coordinates of 
the centre point  C(u,v):     (                                                               )

The definition of the osculating circle provides three equations for P0 (r0,z0):

P0 (r0 ,z0 ) is the common point

common tangent at P0 (r0 ,z0 )

second derivatives equal at P0 (r0 ,z0 )
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The meridian radius of curvature
The solution of this system of equations for the radius r of the osculating 
circle with radius r0 of the parallel crossing the point P0 :

Substitute the expression

into the formula for r above, which results in the meridian radius of 
curvature on the latitude F denoted by M:

Due to the flattening of the ellipsoid, this radius is shortest on the Equator, 
and longest at the Pole.

Example: calculate the meridian radius of curvature M values (F = 0°, Bp 
point latitude and F = 90°) and compare them to the radius of curvature N 
normal to the meridian values on the WDS84 ellipsoid (a = 6378137 m, 
1/f=298.257223563).



Dimensions of the graticule on the ellipsoidal surface

Length Dp of parallel arc on latitude F between the longitudes L1 and  L2 :

The distance Dz between the parallels of F1 and F2 : 

Length Dm of meridian arc between the latitudes F1 and F2 : 

 Let the interval (F1 , F2) be equipartited into n subintervals, and their 

length DFi multiplied by M(Fi ) on intermediate latitudes Fi .

 After summarizing the products, make the partition of the interval denser 

and denser, than the sum converges to the integral:

(calculated numerically, by trapezoidal or Simpson’s rule)
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Surface area of objects on the ellipsoidal surface (1)

Similarly to the spherical zone (Lecture_2), the ellipsoidal zone bounded by 

the Equator and parallel FH will be partitioned into narrow ellipsoidal zones, 

and their surface area will be approached by the lateral face of a truncated 

cone, with the same base and top circles. The bounding parallels of such a 

narrow truncated cone are Fi and Fi+DFi, their radius r(Fi) and r(Fi+DFi). 

The slant height t is near the length of a meridian arc between Fi and Fi+DFi 

approached by a circular arc with radius M(Fi), that is  t  M(Fi)*arc(DFi).

Hence, DFi=t*p*[r(Fi)+r(Fi+DFi)]M(Fi)*DFi*p*[N(Fi)*cosFi+N(Fi+DFi)*cos(Fi+DFi)]

Summarizing: Fsum S DFi  S 2*p*M*N(Fi)*cosFi*DF i 



Surface area of objects on the ellipsoidal surface (2)
• During the refinement of resolution, Fsum converges to the integral:

Fsum  

• After carrying out the integration, the surface area FF of an ellipsoidal 
zone between the Equator and the parallel of latitude F is:

• Consequently, the surface area F of the geographic quadrangle buonded 
by the parallels F1 and F2, as well as the meridians L1 and L2 : 

• The surface area of the whole ellipsoid:

• The surface area Fl of an ellipsoidal lune between the longitudes L1 and 
L2 is its proportional part:

• Example: Calculate the surface area of the WGS84 ellipsoid, the zone 
between the Equator and the parallel of the Bp point and the lune between 
the Greenwich meridian and the meridian of the Bp point.
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Transformations among the different types of 

coordinate systems on the spherical surfaces

Transformation between geographic and spatial rectangular 

coordinates

The origin of the two coordinate systems as well as the axis z and the polar 

axis concide, then the axis x is in the prime semi-plane, additionally 

the units at the axes are the same.

forward formulae: 

reverse formulae:
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Transformations among the different types of 

coordinate systems on ellipsoidal surfaces (1)

• Formulae disregarding the elevation

forward formulae:

reverse formulae:  F can be expressed from the formula for Z by

rearranging it, with respect to sinF:
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Transformations among the different types of 

coordinate systems on ellipsoidal surfaces (2)

• Formulae taking elevation  h into consideration

Note: In the right triangle the length of the hypotenuse 

equals:

forward formulae:

The reverse formulae providing the (F, L, h) from the 

spatial rectangular coordinates (X, Y, Z) are important for the calculations 

of the GPS mesurements (see later).
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Transformations among the different types of 

coordinate systems on ellipsoidal surfaces (3)

• reverse formulae by iteration (Bowring)

initial values     and     for the reduced latitude  and geographic latitude F:

and

then the next three joint formulae:

should be executed repeatedly one after the other, until the deviation 

between the two last latitude values is smaller than the required accuracy. 

Thus receiving F, the formula for the elevation h from Z is:

Finally the longitude is as usual:
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Transformations among the different types of 

coordinate systems on ellipsoidal surfaces (4)
reverse formulae by accurate algorithm (Borkowski):

denotes the distance of the point P from the ellipsoid’s rotation axis:

h is expressed using both this formula and the formula for Z

that is

then squaring and multiplying by the denominators:

rearranging the equation, dividing by cos F, applying the identity : 

a quartic equation of  tanF will be got:

It can be solved exactly e.g. by the Ferrari’s method.

• The longitude L and the elevation h can be got similarly to the Bowring 

method: and
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Examples:
Let the Bp point coordinates be considered as spherical ones:

latitude  = 47°28’29.262”

longitude   = 19°3’43.303”

• Calculate the spatial rectangular coordinates of this point

• Calculate the latitude and longitude from the spatial rectangular coordinates

• Let the geographic coordinates above considered as WGS84 ones, and the 

elevation above the ellipsoid: h=187.575 m. Calculate the spatial rectangular 

coordinates of this point with elevation.

• Calculate the latitude, longitude and elevation from the spatial rectangular 

coordinates by the Bowring method.

• Calculate the surface area of sphere (R=6371 km) and the WGS84 ellipsoid

• Home work:

• Surface area of the geographic quadrangle bounded by the Equator and the 

parallel of the GPS point, as well as the Greenwich meridian and the meridian 

of the GPS point, both on the sphere and on the WGS84 ellipsoid =?

• Let the geographic coordinates above considered as WGS84 ones. Calculate 

the spatial rectangular coordinates of this point without elevation

• Calculate the latitude and longitude from the spatial rectangular coordinates



The working principle of the GPS (1)

• A satellite system is composed of 29 satellites circulating on definite orbits. 

Their positions (Xi, Yi, Zi) i=1,2,…,29 at a specific time instant are known 

from the orbit data. 

• Every satellite has a highly exact atomic clock, and the GPS has a clock.

• The time difference which passes from emitting the signal of the satellite i 

to receiving the signal by the GPS will be converted into the distance Li

with the help of the propagation speed of the radio waves.



The working principle of the GPS (2)

• If three satellites are visible for the GPS then the formulae for the 
distances L1, L2, L3 from the coordinate differences (Pythagorean 
theorem):

where (X, Y, Z) are the spatial rectangular coordinates of the position of 
the GPS. This is a non-linear system of equations with respect to 

(X, Y, Z). It can be solved by iterative methods (e.g. Newton-Raphson).

• The clock in the GPS is not so accurate as the atomic clocks of the 
satellites. Therefore the measuring of the time differences has an error.     
It will be converted into a distance error  DL which can be added to the 
distances originated in the coordinate differences. 
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The working principle of the GPS (3)

• If four satellites are visible then the system of equations consists of four 
equations and the DL can be taken into consideration as a fourth 
unknown variable outside of (X,Y,Z):

• After solving this system, the obtained coordinates (X, Y, Z) are more 
exact than the ones originating in the previous system with three 
equations.

• A further calculation is needed for the geographic coordinates (F, L) and 
the elevation h (namely F from the Bowring’s iterative method or 
Borkowski’s accurate algorithm, then h and L from the formulae above). 
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Examples (Lesson_3):

• Budapest (Control point 1) WGS84 coordinates:

latitude F = 47°28’29.262” (radian=?)
longitude L = 19°3’43.303” (radian=?)

• Length Dm of the meridian arc between the Equator and the 
Budapest point on the WGS84 ellisoid =?

• Length Dp of the parallel arc between the Bp point and the 
Greenwich prime meridian =?

• Distance Dz between the parallel crossing Bp point and the Equator 
=? 

• Extra credit example: the (perpendicular) distance of the Bp point 
from the Greenwich prime semi-plane =?

• The length of the boundaries and the ellipsoidal surface area of 
Colorado state (US) =? (37°<=F<=41°, 109°02’<=L<=102°03’)

GRS80 ellipsoid (a = 6378137m, 1/f = 298.257222101)


