L esson 38

 Cylindrical map coordinate systems

* Mercator (conformal cylindrical) projection of the
sphere

* Oblique Mercator projection
« Conformal cylindrical projection of the ellipsoid
* Double Mercator projection



Cylindrical map projections in general (1)

Central perspective projection from a spherical surface onto a superficies of
a cylinder of revolution by projectors: in order to reflection symmetry, the
centre of projection is located on the rotation axis of the earth sphere, and
the rotation axes of the superficies and the earth sphere coincide.
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After cutting the superticies by one ot its generators and unfolding it into a
plane, the image of the graticule passes over a planar rectangular grid:

a) the images of the parallels are parallel straight lines, b) the images of the
meridians are parallel straight lines, too, c) they are perpendicular to
each other, and d) the distance between the mapped meridians is
proportional to the correspondent longitude difference.



Cylindrical map projections in general (2)

If the map graticule (or metagraticule) has the previous properties then it is
called cylindrical map projection.

1u 1 The graticule (metagraticule) has generally
two axes of reflection symmetry. The
image of the equator__Orizontal one usually coincides with
’ the axis y which is mostly the image of

the equator.
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Rectangular coordinates of the normal version:

x=x(p)

y=c-R-arc(1-4,)
where X(¢) is a strictly increasing and possibly odd function, and the
coefficient c depends on the true scale parallel ¢, practically c=coso..
The graticule distortions are:
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Cylindrical map projections in general (3)

In the case of transverse or oblique version:

grid line

metaparallel).

x =x(p") y=c-R-arc}’
where c=cos(¢g*) 5 TLJF,
(ps* is the true scale — oewee T L

Ellipsoidal formulae:

x = X(d)

y=N(®, ) cosd, -arc(A—A,)

Graticule distortions: ;_4 q
o N(®,)-cos®,
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Mercator’s conformal cylindrical projection of the
sphere (1)

: : . . COS dx 1
Equation of conformity h=Kk is in this case: P 222
cose do R
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Consequently x=R-cosg, - [ % =R -cos ¢, - In tan(45°+§j (constant of integr.=0)
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Mercator’s conformal cylindrical projection of
the sphere (2)

COSQg

H 2
The linear scales: |=h=k = . the area scales: p=h- k=5

cos@ cos?¢
There is not any distortion along the standard parallels. In the case of £@s=0
the equator is free of distortions. Far from the equator the linear and area
scales grow strongly. The images of the poles are infinitely far away.

The loxodrome on the map of Mercator’s projection

A loxodrome (rhumb line) is a line on the surface of the sphere, which has
the same azimuth o in its every point (a¢=constant).

Thus the meridians (a=0° or ¢=180°) and the
parallels (a«=90° or a=270°) are trivial loxodromes.
The loxodromes with a differing azimuth are
spherical spirals leading from one pole to the other.

If the azimuth a#90° then to each value of the
latitude ¢ belongs only one longitude A. Asked
the single-valued function A=A(o).




The coordinates ¢ and A of the point P on the loxodrome arc will be
changed by Ap and AA. This establishes a small figure which is almost a
small planar right triangle with the loxodrome arc As ("hypotenuse") as well
as parallel arc Rxcose=*arcAA ("leg") and meridian arc R+arcAo ("leg").
Then approximately:
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R-cos¢-arcAl R-cos,
rearranged: R-arca¢ i3 ap=Rc0sg AR ()
ana - arcAg Sio \
arcAAd = T2 -
L CcoS 25
Partitioning the loxodrome

-

arc into small parts, the sum
converges to the mtegral

Idx% jtana =tana - I and the function A=A(o): i:tana-lntanL45°+£)+c
COS @ oS @ 5

where, if crossmg 0., the constant C of integration: ¢ :ﬂo—tana-lntan(45°+%j
If ¢—>490° then 1 —+w, S0 @=@(A) IS a multivalued function.

The azimuth o of a loxodrome tan g — A — A
crossing the points ¢ ,4; and @,,1, : |ntan(45o+%j_|man(45o+(Pl)
The length of a loxodrome arc between 2 2
the latitudes ¢g and ¢y: cosa NE,aALN”
S

R-arcA
rearranged; As~———%
COS o ] J‘ds _

_ arce, —arce
The sum converges to the integral: ) cosa and finally s=R arcey -
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Mercator’s conformal cylindrical projection of
the sphere (4)

If the loxodrome of azimuth a passes through the spherical point P, (¢5,4),
whose image is the point P’(x,,y,) then its eiuation IS:

A=Ay =tana: {In tan(45° + %) —In tan(45° + %)

Multiplying it by R-cosg, with an arbitrary latitude of ¢
R-cosep,-A—R-cose, -4, = tana-{R-COS(DS -In tan(45°+%j— R - cos ¢, -Intan(45°+%ﬂ

and applying the projection equations x and y of the Mercator projection
with the true scale parallel of ¢, the formula

Y= Yo =tana-(x—x,)
will be got which is an equation of a straight line crossing the map point
P, (X0.Yo) assigned to the Earth point Py(¢,,4,)- This straight line and the
vertical axis x include an angle a. It proves that the spherical loxodromes

are represented by straight lines on those charts which were mapped by the
Mercator’s projection.

The shipping on the oceans which preferred the pathes along loxodromes
from the XVII century, used Mercator’s maps to the navigation.



Examples for loxodrome and orthodrome in
Mercator projection

™

[60"
T | Zgﬁrocmomm
NEW YORK o T i
‘\ N~ [LINEA LOSSODROMICA
~ L=
.30' ~
«\ \\ w
] @
M ) S\ o
< o)
0* RE N e
\ -
N) 3\ 0 \ [P
NE |(
~
~

[30°|sup

*E

:
°
~—
5
=
-3
]




Mercator’s conformal cylindrical projection of the ellipsoid (1)

Equation of the conformity is: h=k which is detailed:
N(®,)-cos®, dx 1
N(®)-cos® dd M(D)

dx _ M(®)-N(@,)-cos @, _ N(®, )-cos . - (1-e?)

dd  N(®)-cosd (L—e® -sin? ®)-cos
It means that

| (1-¢) | L G50 ]
y=IN(D ) D - dD =N ) D - i |
X J. ( s_) 5 (1—92'31.112@)'008(1) ( s,) 5 _.- cos @ 1—€2°Sh12®J

Carrying out the integration (see Lesson_6, slide 4-5):

x=N(®,)-cos®, - In[tan(45° + %) : (Hﬂ)z

that is

l+e-sin®d
and as usual:

y =N(®,)-cos®, -arc(A—A,)
Applied for large scale maps representing the surroundings of the Equator.

m N(®).cogq,
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Loxodrome on the ellipsoid
Derivation of the equation, similarly to the
spherical one, based on the small right triangle:
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Mercator’s conformal cylindrical projection of the ellipsoid (2)

rearran ) "
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AA=tano - — =tanco - TR -AD  F5 ®
NID)-cos @ (1-e® sin’®) cos® s& pp=N(®) cos® 2N =
Taking sum of both sides and refining the partition: £5 . s -
1) ee I -
1 —_ 0 ““
I d\ =tano - I — ('_ ; ‘ dd
(1—e’ sm* @ - cos @ c

Equation of the onodrome crossing Py(Dg,Ay):

e e ]

(1—e-sin @) 1= e-sin D,
—’ —In tan 4\ + ‘ ‘ ‘ L
\ 1+e-sm® ) d+e-sin® ‘

Multiplying both sides by N(CDS)*COSCDSZ
o) (22|

tan(45o+i§].[;jj$ zﬂ-y@ ) cos®, :In

Applying the Mercator projection equations X, y: y-Y,= tana*(X—X,)
which is equation of a straight line crossing P,’(X,,Y,) on the map and
forming an angle o with the axis x.
Arc length of the loxodrome between ®¢ and @:
M(D)-AD

As
-YiM(@;)-00; ; the arc length s s =/ ds = — |f@”M((Z>) d®|

N= N =tames

NP lecosd, A-Ajl=tana (MNP, ) cosD, - In

_M(D)-AD
: rearranged: As®

from the figure above: coso ~

COS

summarizing XiAs; »

cosa



Obligue cylindrical map projections

If the area to be represented expands along a great circle of a sphere, then
this great circle can be taken as the metaequator of a metacoordinate
system, and the projection equations are related to the metacoordinates.

By the oblique cylindrical projections the distortions increase with the
distance from the metaequator while they are negligible near the
metaequator.
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The grayscale level indicates the magnitude of the map distortions in the normal
and oblique cylindrical projections (white shows negligible distortions)



Obligue conformal cylindrical map projections (1)

A conformal cylindrical projection should be referred to the metacoordinates

(P* }L*'
] . N - X
X =R-cosg, *-Intan 450+(p_ :B~coS(ps*,|n m
2) 2 1-sing*
y=R-cose, *-arcA*

Using the metacoordinate transformations
sin @* = cos @, -sing —sin g, -cos ¢-cos(A — 4, )

and the formula for tanA* deduced from the law of sines and the cosine rule
for sides:

sinl* sin(1-4,)

COSA*  sing,-tang+cose, -cos(A — A, )

The rectangular coordinates are:

tan A* =

"1+cos Py - S0 Q— S @ - COS @+ cOs(A— Ay ) |

.\‘—5 COR @ ln| M ’+\D 5 cos ]n’

2 L 1—sm Q¥ 2 1= cos @y -sin @ +sm @y - cos - cos{A— g ))
sin(A— Ay )

v=R-cosp™* '11(.’[314 ’—HD

_tan @-sin @ +cos @y -cos(A— Ay ),
where ¢.* Is the true scale metaparallel, and P, (¢«,A«) IS the intersection
of the metaequator and the prime metameridian, furthermore x,,y, are the
planar translation coordinates of the origin (,false northing”, ,false easting”).



Obligue conformal cylindrical map projections (2)

If c=cos(¢p.*)<1 then the projection is called ,reduced”, and c provides the
measure of the reduction. The earth coordinates can be calculated by
reverse use of projection equations:

Y—MW

p*=2 fuctm{e\p’ r=%) @ —-90° arc(A*)= FE—

R-cosp™* |
then from the metacoordinates into geographic coordinates: ¢*,A* > ¢,A.

e”lpSOld aposphere lmage surface

Mapping the ellipsoid by a
double Mercator projection: .
a linking of two mappings N o P oblique

elhpso&d sphere conformal

(a conformal ellipsoid-sphere transformation  cylindrical mapping
transformation and an obliqgue conformal cylindrical projection from the
intermediate sphere to the plane).

Applications:

Rosenmund projection (1903) for the topographic mapping of Switzerland
(,Swiss Oblique Mercator projection”, c=1)

Projection of Fasching (1909) for the cadastral maps of Hungary (c=1)
EOQOV (1975) for the civil map systems of Hungary (c=0.99993).



Obligue conformal cylindrical map projections (3)

Mapping the ellipsoid by a Hotine oblique Mercator projection

It is actually a double projection from the ellipsoid onto the plane, where the
coordinates of the intermediate surface (not a sphere) do not appear during
the calculation, therefore it can be considered as a direct mapping.

This conformal mapping assigns a straight line (,initial line”) of the map to an
ellipsoidal line (,centre line”). Given the centre of the projection ®,Ac
located on the centre line, the azimuth o, of the centre line taken in the
centre of projection, and the scale distortion k. at the centre of projection.
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Home work

Given the map coordinates of P’: X=263693.08m and Y=468839.43m in an
obligue conformal cylindrical projection, where R=6379743m,
cos(p*)=0.99993, x,=400000m, y,=650000m, ¢=47°06'0.0", 1,=0°.
Asked:

1. the metacoordinates ¢*, A* and the spherical coordinates ¢, A of the
point P;

2. the linear scale | and the area scale p at P in normal case (related to o)
and in oblique case (related to ¢*);

3. the azimuth a of the spherical loxodrome connecting the points K and P,
and the length of this loxodrome arc.

4. the length of the orthodrome arc connecting K and P.
Extra credit example:

5. the ellipsoidal coordinates @,A of the point P to be calculated by the
iterative sphere-ellipsoid transformation (n=1.0007197049,
k=1.003110007693, €=0.08182056794) in three steps, and the ellipsoidal
coordinates of the point K.

6. the azimuth and the length of the ellipsoidal loxodrome arc connecting K
and P.



