
Lesson 8

• Cylindrical map coordinate systems

• Mercator (conformal cylindrical) projection of the 

sphere

• Oblique Mercator projection

• Conformal cylindrical projection of the ellipsoid

• Double Mercator projection 



Cylindrical map projections in general (1)

Central perspective projection from a spherical surface onto a superficies of 
a cylinder of revolution by projectors: in order to reflection symmetry, the 
centre of projection is located on the rotation axis of the earth sphere, and 
the rotation axes of the superficies and the earth sphere coincide.

After cutting the superficies by one of its generators and unfolding it into a 
plane, the image of the graticule passes over a planar rectangular grid:  

a) the images of the parallels are parallel straight lines, b) the images of the 
meridians are parallel straight lines, too, c) they are perpendicular to 
each other, and d) the distance between the mapped meridians is 
proportional to the correspondent longitude difference.



Cylindrical map projections in general (2)

If the map graticule (or metagraticule) has the previous properties then it is 

called cylindrical map projection.

The graticule (metagraticule) has generally

two axes of reflection symmetry. The 

horizontal one usually coincides with 

the axis y which is mostly the image of 

the equator.

Rectangular coordinates of the normal version:

where x(j) is a strictly increasing and possibly odd function, and the 

coefficient c depends on the true scale parallel js, practically c=cosjs.

The graticule distortions are:
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Cylindrical map projections in general (3)

In the case of transverse or oblique version:

where  c=cos(js*)  

(js* is the true scale

metaparallel).

Ellipsoidal formulae:

Graticule distortions:

and cotQ0.
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Mercator’s conformal cylindrical projection of the 

sphere (1)
Equation of conformity h=k is in this case:

Consequently (constant of integr.=0)

The coordinate x will be transformed:

Hence the rectangular coordinates:

The poles can not be represented.

The inverse projection equations:
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Mercator’s conformal cylindrical projection of 

the sphere (2)
The linear scales: ;  the area scales:

There is not any distortion along the standard parallels. In the case of         =0

the equator is free of distortions. Far from the equator the linear and area 

scales grow strongly. The images of the poles are infinitely far away.

The loxodrome on the map of Mercator’s projection

A loxodrome (rhumb line) is a line on the surface of the sphere, which has 
the same azimuth   in its every point (=constant). 
Thus the meridians (=0° or 180°) and the 
parallels (=90° or 270°) are trivial loxodromes. 
The loxodromes with a differing azimuth are 
spherical spirals leading from one pole to the other. 

If the azimuth 90° then to each value of the 
latitude j belongs only one longitude . Asked 
the single-valued function j.



The coordinates j and  of the point P on the loxodrome arc will be 

changed by Dj and D. This establishes a small figure which is almost a 

small planar right triangle with the loxodrome arc Ds ("hypotenuse") as well 

as parallel arc R*cosj*arcD ("leg") and meridian arc R*arcDj ("leg"). 

Then approximately:

rearranged:

Partitioning the loxodrome 

arc into small parts, the sum 

converges to the integral:

and the function j:

where, if crossing j0,0, the constant C of integration:

If then , so  jj is a multivalued function.

The azimuth  of a loxodrome 

crossing the points j1,1 and j2,2 : 

The length of a loxodrome arc between

the latitudes jS and jN: ,  

rearranged:

The sum converges to the integral: and finally
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Mercator’s conformal cylindrical projection of 

the sphere (4)

If the loxodrome of azimuth  passes through the spherical point P0 (j0,0), 

whose image is the point P’(x0,y0) then its equation is:

Multiplying it by  Rcosjs with an arbitrary latitude of js:

and applying the projection equations  x and  y of the Mercator projection 

with the true scale parallel of js,  the formula

will be got which is an equation of a straight line crossing the map point 

P0’(x0,y0) assigned to the Earth point  P0(j0,0). This straight line and the 

vertical axis  x include an angle . It proves that the spherical loxodromes 

are represented by straight lines on those charts which were mapped by the 

Mercator’s projection.

The shipping on the oceans which preferred the pathes along loxodromes 

from the XVII century, used Mercator’s maps to the navigation.
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Examples for loxodrome and orthodrome in 

Mercator projection



Mercator’s conformal cylindrical projection of the ellipsoid (1)

Equation of the conformity is:  h=k which is detailed:

that is 

It means that

Carrying out the integration (see Lesson_6, slide 4-5):

and as usual:

Applied for large scale maps representing the surroundings of the Equator.

Loxodrome on the ellipsoid

Derivation of the equation, similarly to the 

spherical one, based on the small right triangle:

 
   









Md

dx

N

N ss 1

cos

cos

   
 

 
 

  









 cossin1

1
cos

cos

cos
22

2

e

e
N

N

NM

d

dx
ss

ss

 

































 


2

sin1

sin1

2
45tanlncos

e

ss
e

e
Nx

   0cos  arcNy ss



Mercator’s conformal cylindrical projection of the ellipsoid (2)

rearranged:

Taking sum of both sides and refining the partition:

Equation of the loxodrome crossing P0(0,0):

Multiplying both sides by N(s)*coss :

Applying the Mercator projection equations x, y:   yy0 = tan*(xx0)

which is equation of a straight line crossing P0’(x0,y0) on the map and 

forming an angle  with the axis x.

Arc length of the loxodrome between S and N:

from the figure above: ; rearranged:

summarizing: ; the arc length s:



Oblique cylindrical map projections

If the area to be represented expands along a great circle of a sphere, then 

this great circle can be taken as the metaequator of a metacoordinate 

system, and the projection equations are related to the metacoordinates.

By the oblique cylindrical projections the distortions increase with the 

distance from the metaequator while they are negligible near the 

metaequator.



Oblique conformal cylindrical map projections (1)

A conformal cylindrical projection should be referred to the metacoordinates 

j*, *:

Using the metacoordinate transformations

and the formula for  tan* deduced from the law of sines and the cosine rule 

for sides:

The rectangular coordinates are:

where  js*  is the true scale metaparallel, and  PK (jK,K)  is the intersection 

of the metaequator and the prime metameridian, furthermore  x0,y0 are the 

planar translation coordinates of the origin („false northing”, „false easting”). 
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Oblique conformal cylindrical map projections (2)

If c=cos(js*)<1 then the projection is called „reduced”, and c provides the 

measure of the reduction. The earth coordinates can be calculated by 

reverse use of projection equations:

then from the metacoordinates into geographic coordinates:  j*,*  j,.

Mapping the ellipsoid by a 

double Mercator projection:

a linking of two mappings 

(a conformal ellipsoid-sphere 

transformation and an oblique conformal cylindrical projection from the 

intermediate sphere to the plane).

Applications:

• Rosenmund projection (1903) for the topographic mapping of Switzerland 

(„Swiss Oblique Mercator projection”, c=1)

• Projection of Fasching (1909) for the cadastral maps of Hungary (c=1)

• EOV (1975) for the civil map systems of Hungary (c=0.99993).



Oblique conformal cylindrical map projections (3)

Mapping the ellipsoid by a Hotine oblique Mercator projection

It is actually a double projection from the ellipsoid onto the plane, where the 

coordinates of the intermediate surface (not a sphere) do not appear during 

the calculation, therefore it can be considered as a direct mapping.

This conformal mapping assigns a straight line („initial line”) of the map to an 

ellipsoidal line („centre line”). Given the centre of the projection C,C

located on the centre line, the azimuth c of the centre line taken in the 

centre of projection, and the scale distortion kc at the centre of projection.



Home work

Given the map coordinates of P’: X=263693.08m and Y=468839.43m in an 

oblique conformal cylindrical projection, where R=6379743m, 

cos(js*)=0.99993, x0=400000m, y0=650000m, jK=47°06’0.0”, K=0°.

Asked: 

1. the metacoordinates j*, * and the spherical coordinates j,  of the 

point P;

2. the linear scale l and the area scale p at P in normal case (related to j) 

and in oblique case (related to j*);

3. the azimuth a of the spherical loxodrome connecting the points K and P, 

and the length of this loxodrome arc.

4. the length of the orthodrome arc connecting K and P.

Extra credit example:

5. the ellipsoidal coordinates , of the point P to be calculated by the 

iterative sphere-ellipsoid transformation (n=1.0007197049, 

k=1.003110007693, e=0.08182056794) in three steps, and the ellipsoidal 

coordinates of the point K.

6. the azimuth and the length of the ellipsoidal loxodrome arc connecting K 

and P.


