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Preface

This work contains the translation of the Hungarian
language lecture notes used in the course of mathematical
cartography in Eötvös Loránd University.

The lessons of this curriculum do not follow a them-
atic logic, but gradually build up the concepts from the
simple to the more complex. This is why there are many
references back to much earlier material in relating cal-
culations. The blue links in the text are clickable and
facilitate navigation within the work.

The lessons are grouped into three parts: Lessons of
the first part define general concepts and derive basic
formulae of map projection theory. In the second part, the
reader will learn about the characteristics, history and
classification of conical projections followed by some tech-
nical notes about their application in GIS and geodesy.
In the third part, the focus is on non-conical projections.
After a systematic description of each projection, you will
find a guide about recognizing projections and approxim-
ate calculations of mappings with the smallest distortion
possible.

Although I have endeavoured to cover topics that are
related in each lesson, to fit the topics into 90-minute
long lectures, some loosely related material may have
been included in a single lesson. Colour formulae can
be found throughout the note. This is intended to aid
understanding during complex transformations. If you

see expressions with the same colour on both sides of
an equals sign, they have the same value. Often, before
or after simplifying fractions or equations, expressions
of the same colour appear on both sides to highlight the
transformation. It is therefore not recommended printing
the notes in greyscale.

In the description of the course material, I have tried
to use language that is understandable to students of
cartography, and have therefore avoided using formal
mathematical terminology wherever possible. However,
understanding some topics (such as conformal projec-
tions) requires deep mathematical knowledge, which is
understandably not part of a master’s degree in carto-
graphy. In such cases, I have endeavoured to highlight,
as far as possible, the complexity of the mathematical
problems involved so that the projections that arise and
can be applied in practice are not presented as a fairy
tale; at the same time, the tone of the text is more inform-
ative than scientific. Therefore, I do not give the usual
standard definitions used in mathematical literature for
new concepts, but try to convey their visual meaning. At
the same time, where this is possible, I also include a few
mathematical points of interest in the form of footnotes.

I hope that this adventure of discovery will be enjoyable
for both the students of the courses and for the interested
readers!
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Lesson one

Parametrization of the sphere and the ellipsoid

I.1 Units of measurement

When interpreting coordinate systems, it is very import-
ant to know what units of measurement they use. Al-
though the usage of the metric system seems obvious
today, it is not so evident on foreign or old maps.

Angles are usually given in degrees on maps, but
minutes and seconds are also common: 1° = 60′ = 3600′′ .
On French maps, we can find the decimal gradian, the
right angle used to be divided into 100g instead of 90°.
The gradian is divided into centesimal minutes and cen-
tesimal seconds: 1g = 100c = 10000cc. On old French
maps, therefore, proceed with caution!

Formulae are often simpler if you calculate in radians,
which is the ratio between the length of the arc subtending
the angle and the radius of the circle: 180° = π radians.
We denote radians by omitting the unit of measurement.
In this note, the notation �α (arc) indicates that the angle
α must be substituted into the formula in radians. For
example, the arc length s of radius R subtending the angle
ϑ in radians, can be calculated using the formula s = R�ϑ.

Theoretically, the unit of measurement called mil on
military maps of the Soviet era would be a thousandth of
a radian, but in the Eastern Bloc countries, for simplifica-
tion, the turn is divided into 6000mils instead of ∼ 6283.
The mil is denoted by placing a dash between the places
of tens and hundreds: the right angle expressed in mils is
therefore 15-00.

Common coordinate systems usually use metres for
distances.* The old definition of a metre is a ten-millionth
of a terrestrial half meridian, i.e. 1 km is approximately
the length of the meridian arc subtending the angle of 1c

(centesimal minute). There may be other units of meas-
urement besides the metre:

• 1 US mile ≈ 1609m
• 1 nautical mile ≈ 1852m (the length of the meridian

arc subtending the angle 1′ at the centre of the Earth)
• 1 US foot ≈ 30·48 cm (used for altitude on air naviga-

tion maps)
• 1 Viennese klafter ≈ 1·896m (used on old Hungarian

surveying and military maps)
• 1 Viennese mile = 4000 klafters ≈ 7586m
Using the examples of the metre and the nautical mile,

it can be seen that distances on the Earth can be described
by the angle they subtend, since the radius of the Earth
(R ≈ 6371 km) is known. As a rule of thumb, the 1° ≈
111 km estimate can be used, but it is important to note
that this only gives a good value along meridians!

* Since the Germans happened to have an old standard 15 µm longer
than the others, the metre on maps of former German colonies (e.g.
Namibia) may still differ from the real metre, and this must be adjusted
in the GIS if necessary!

I.2 Surfaces of revolution

If an arbitrary smooth plane curve is rotated about an axis
of rotation lying in the same plane, the surface that the
curve generates is called a surface of revolution. The green
generatrices on Fig. I.1 congruent with the original plane
curve are called meridians, and the blue circles in the
planes perpendicular to the axis of rotation are called par-
allels. Parallels and meridians are always perpendicular
to each other.

O

P

s

α

Figure I.1: Polar coordinates on a surface of revolution

The figure also shows one possible coordinate system,
the polar coordinate system of the surface of revolution,
similar to the polar coordinate system of planes. The
radial distance s between the origin O and the point P is
measured along the shortest possible path on the surface.
This shortest path is called the geodesic. All meridians on
a surface of revolution are also geodesics, but parallels
are usually not geodesics. The equivalent of the polar
angle here is the azimuth α, which is always measured
clockwise from the meridian passing through the origin.†

The other possible reference system is the parametric
frame, which can be defined by an arbitrary function
f (u,v) 7→ (x,y,z), with the constraint that the Cartesian
coordinates (x,y,z) returned by the function must fall on
a point of our surface for all (u,v) in the domain. In this
case, the original pair (u,v) is called the parametric co-
ordinate of the surface, and the function f (u,v) is called

† In very rare cases, it may be possible to connect two points on the
surface of revolution by several geodesics with different azimuths. An
example is two points on the opposite sides of a sphere. In such cases,
the azimuth of the point is not unique, but the inverse relation is always
unique: a certain azimuth and distance still represent a single point on
the surface.
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I. Parametrization of the sphere and the ellipsoid

the parametric representation of the surface. We call co-
ordinate curves those curves on the surface along which
either parameter u or v is constant.

I.3 The sphere

A locus of points equidistant from a point is called a
sphere. The points of a sphere of radius R centred at the
origin always satisfy the following equation:

x2 + y2 + z2 −R2 = 0

The sphere can have multiple parametric representa-
tions. One possible parametrization is where the para-
meters u,v are the latitude ϕ and longitude λ. The former
is defined as the angle between the vector pointing to
the point and the plane subtended by axes x,y, the latter
angle is measured between axis x and the vector point-
ing to the point orthogonally projected onto the plane
x,y. This parametric representation can be formulated as
shown in Fig. I.2:

x = Rcosϕ cosλ

y = Rcosϕ sinλ

z = Rsinϕ

Rcosϕ r

z

R Rsinϕϕ

(a) Side view

r cosλ x

y

Pl
an

e
of

si
de

vi
ew
r

=
R

co
sϕ

r sinλ
λ

(b) Top view

x

y

North Pole

z

rEquator

Pr
im

e
m

er
id

ia
n

Parallel

M
eridian

ϕ
λ

λ

R
sin

ϕ

r =
R

cosϕ

r co
sλ

r sinλ

λ

(c) In the space

Figure I.2: Geographical coordinates of the sphere

It can be seen that the coordinate curves ϕ are parallels
of the sphere, their radius is Rcosϕ, while the coordinate

curves λ are meridians of the sphere, their radius is R.
If we want to get geographic coordinates from Cartesian
ones, we can also read from the figure that:

sinϕ =
z
R

=
z√

x2 + y2 + z2

tanλ =
y

x

In the case of the Earth, axis z is placed in the direction
of the axis of rotation, so the latitude is measured from
the plane perpendicular to it. The coordinate curve of lat-
itude 0° is called the Equator. However, the measurement
of longitudes is not straightforward because axis x can be
rotated in the direction of any Prime meridian. In prac-
tice, the most common Prime meridian is the meridian
through the Greenwich Observatory,* but other Prime me-
ridians are also used: for example, until recently, the
French often indicated longitudes starting from Paris,†

and on old maps we frequently find longitudes measured
from Ferro.‡ For national surveying purposes, most coun-
tries have also designated their own Prime meridians. In
Hungary, it passes through Gellérthegy at the end of the
Citadel near the Statue of Liberty.

I.4 The ellipsoid of revolution

An ellipsoid of revolution is obtained by rotating an ellipse
around one of its axes. The ellipsoid can be characterized
by two data, the major semi-axis a and the minor semi-
axis b. The points constituting the ellipsoid with axis of
rotation z centred at the origin can be described by the
following equation:

x2

a2
+
y2

a2
+
z2

b2
− 1 = 0

The shape of the rotation ellipsoid can also be charac-
terized by the flattening f , the first eccentricity e and the
second eccentricity e′ :

f =
a− b
a

e =

√
a2 − b2

a2

e′ =

√
a2 − b2

b2

The flattening is usually given by its reciprocal (f ≈
1/300), while the first eccentricity is often found squared
in the literature. However, sometimes the eccentricity is

* In fact, the International Prime meridian is located 102m east of
the observatory to correct for the vertical deflection.

† Moreover, it is in gradians to cause as much confusion as possible.
‡ This Prime meridian was defined as being 20° west of Paris in the

Atlantic Ocean.
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I. Parametrization of the sphere and the ellipsoid

not given at all, in which case we have to calculate it from
the flattening:

e =

√
a+ b
a

a− b
a

=

√
2a− (a− b)

a
f =

√
(2− f )f =

√
2f − f 2

By transforming the formula for the first eccentricity,
we can obtain a very important relation:

e2 =
a2 − b2

a2

e2 − 1 = −b
2

a2

a2(1− e2) = b2

b = a
√
1− e2

We will use this expression often! For example, we can
get the flattening from the first eccentricity:

f =
a− a
√
1− e2

a
= 1−

√
1− e2

Or the relation between the first and second eccentri-
cities:

e′ =

√
a2 − b2

a2(1− e2)
=

e
√
1− e2

On the ellipsoid, we define the longitude Λ in the same
way as before on the sphere. However, we can define three
different latitudes (Fig. I.3):

• The geocentric latitude Ψ is the angle between the
vector from the centre of the ellipsoid to the point
and the plane of the Equator.

• The geodesic or geographic latitude Φ is the angle
between the normal (local vertical) of the surface
and the plane of the Equator.

• The parametric latitude Θ is the latitude that would
be measured on the sphere of radius a if the ellipsoid
were stretched by a factor of a/b in the direction of
axis z.

a

b

r

z

Θ
ΦΨ

Φ

90°−Φ

Figure I.3: Latitudes on an ellipsoid

In cartographic practice, we most commonly use the
geodesic latitude. This is because it was easy to meas-
ure using astronomical methods: latitude is equal to the
angle between the tangent plane of the ellipsoid (local
horizontal) and the direction of the Earth’s axis of rotation
(North Star). To convert between the three definitions of
latitude, let us first formulate the equation of the ellipse
shown in the figure:

r2

a2
+
z2

b2
− 1 = 0

Expressing z:

z = b

√
1− r

2

a2
=
b
a

√
a2 − r2

The derivative is the slope of the tangent line of the
ellipse:

dz
dr

=
−br

a
√
a2 − r2

In the figure, it can be seen that the slope angle of the
tangent line of the ellipse marked by the red dashed line
supplements the latitude just to the right angle. Knowing
that the derivative is the signed slope of the tangent line,
and taking into account that the derivative is negative:
dz/dr = − tan(90°−Φ) = −cotΦ . That is:

−br
a
√
a2 − r2

= −cosΦ
sinΦ

b2r2

a4 − a2r2
=

cos2Φ
sin2Φ

b2r2 sin2Φ = a4 cos2Φ − a2r2 cos2Φ

r2(a2 cos2Φ + b2 sin2Φ) = a4 cos2Φ

r =
a2 cosΦ

√
a2 cos2Φ + b2 sin2Φ

This gives the radius of the parallel at latitude Φ . Sub-
stitute the result into the equation of the ellipse to get
z:

z =
b
a

√
a2 − r2 =

b
a

√
a2 − a4 cos2Φ

a2 cos2Φ + b2 sin2Φ

=

√
b2a2 cos2Φ + b2b2 sin2Φ − a2b2 cos2Φ

a2 cos2Φ + b2 sin2Φ

=
b2 sinΦ

√
a2 cos2Φ + b2 sin2Φ

The figure shows that tanΨ = z/r, so

tanΨ =
b2 sinΦ
a2 cosΦ

=
b2

a2
tanΦ

However, Θ is by definition the image of Ψ after
stretching by a factor of a/b:

tanΘ =
a
b

tanΨ

Substituting the two equations into each other:

tanΘ =
b
a

tanΦ

Thus, from any latitude, the other two can be calcu-
lated, and the relation Ψ ≤Θ ≤Φ can be demonstrated
in the Northern Hemisphere.
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Lesson two

Introduction to spherical geometry

II.1 Non-Euclidean geometries

The Euclidean geometry taught in secondary school cov-
ers the geometric relationships on a flat plane well, but in
practice, we see differences. For example, the first survey-
ors found that the sum of the interior angles of triangles
measured in the field was slightly greater than 180°. This
is due to the curvature of the Earth.

The geometries of curved spaces are called non-Euc-
lidean geometries. There are three main types:

• Hyperbolic geometry: the interior angles of triangles
add up to less than 180°, a line can have several non-
intersecting lines drawn through a point outside it in
the same plane. Such is the case in Bolyai geometry.*

• Parabolic geometry: the interior angles of triangles
add up to 180°, a single parallel line can be drawn
for a line through a point outside it. An example is
the Euclidean geometry.

• Elliptic geometry: the interior angles of triangles add
up to greater than 180°, any two lines lying in a plane
intersect each other. This includes the spherical geo-
metry we are discussing.

In spherical geometry, the role of the plane is replaced
by the sphere. Points are defined in the usual way. We
look for the equivalent of the straight line that still repres-
ents the shortest distance between any two points: this is
the geodesic. Spherical geodesics are circles whose centre
is at the centre of the sphere and whose radius is equal
to the radius of the sphere.† The spherical straight line is
also called the great circle.

Loci of points equidistant from a point on a sphere are
also circles, but they are called small circles, distinct from
spherical lines. In fact, spherical lines can be considered
as special spherical circles with a maximum possible ra-
dius. Angles are measured in the usual way between the
tangents, while the angle subtended by the vectors from
the centre of the sphere to the two points is used to char-
acterize the distance. Coordinates are interpreted here in
the geographic coordinate system.

II.2 Notable parts of the sphere

A shape bounded by two concentric small circles and
two great circles perpendicular to them is a geographical
quadrangle. Contrary to its name, it is not a spherical
polygon, because only two of its bounding sides are spher-
ical straight sections, the other two are arcs of spherical
circles.

* Such geometries play an important role in Einstein’s theory of
general relativity.

† Some of the statements can be demonstrated at home: take a
roughly spherical orange with a thick peel and stick pins or toothpicks
into it. The rubber band stretches along the geodesics of the orange.

The surface area of the quadrangle can be calculated as
follows: divide its area into thin bands with concentric
(latitude) circles. Then the surface of each band can be
approximated by a rectangle whose area is the product
of the base and the height (Fig. II.1). It is known that the
radius of a parallel is r = Rcosϕ (Sec. I.3). The length
of the arc forming the base is the product of the radius
r and the subtended angle (in radians!). However, the
subtended angle is the difference in longitude λ2 −λ1, so
the length of the base is Rcosϕ( �λ2 − �λ1). The height of
the tiny rectangle is a tiny arc of circle whose length is the
product of the change in latitude in radians and the radius
of the sphere (R�∆ϕ). Thus, the area of the small rectangle
is given by R2( �λ2− �λ1)cosϕ�∆ϕ. Refining the partitioning,
the summation of the infinitesimal rectangles becomes an
integration between the bounding latitudes ϕ1 and ϕ2:

A =

ϕ2U
ϕ1

R2
( �λ2 − �λ1)cosϕdϕ = R2

( �λ2 − �λ1)(sinϕ2 − sinϕ1)

r�∆λ = Rcosϕ�∆λ
R�∆ϕ

Figure II.1: Dividing the area of a quadrangle into small rectangles

The surface bounded by a spherical small circle is the
spherical cap, and the surface between two concentric
spherical circles is the spherical zone (Fig. II.2). The sur-
face area of a spherical zone can be calculated simply
from the previous formula by substituting ±180° for the
bounding longitudes:

A⊚ = R2[π − (−π)](sinϕ2 − sinϕ1) = 2R2π(sinϕ2 − sinϕ1)

In the formula above, substituting the latitudes of the
North and South Poles (±90°) for the bounding latitudes
gives the surface area of the entire sphere:

A� = 2πR2[1− (−1)] = 4R2π

As mentioned earlier, in spherical geometry, any two
spherical lines (great circles) intersect each other. In addi-
tion, it is observed that two spherical lines have not only
one, but two points of intersection, which are antipodal
points of each other. It is thus possible to construct a spher-
ical polygon bounded by only two spherical sections and

10



II. Introduction to spherical geometry

ϕ1

ϕ2

λ1
λ2

α

Figure II.2: Zone (blue), lune (red), and quadrangle (purple)

two vertices. This shape is called a spherical lune (Fig. II.2).
The surface area of the lune is in direct proportion to the
angle �α at the vertex, which is now measured in radians
for simplicity. If the angle of the lune is a turn (2π), then
it covers the entire surface of the sphere (4R2π). From
this, we obtain the surface of the lune using proportions:

A() = 2R2�α
II.3 The spherical triangle

The equivalent of a planar triangle on a sphere is called
a spherical triangle, bounded by three spherical sections.
It is possible to construct a spherical triangle that has
a concave angle (Fig. II.3); however, we usually do not
consider these, and the statements are given for convex
spherical triangles.

A

B
C

Figure II.3: Concave spherical triangle

The area of the triangle is obtained from the formula
for the area of the lune. Let us cover the sphere with two
antipodal lunes of angle α starting from vertex A. The
combined surface area of the two lunes is 4R2�α. Repeat it
for vertices B and C and two of each corresponding lunes
of angles β and γ! Now the combined surface area of the
lunes is 4R2(�α + �β + �γ). The six lunes completely cover
the surface of the sphere (4R2π), but we have managed
to cover the triangle in question and its antipodal three
times (Fig. II.4). This means that the area of the spherical
triangle was covered four times unnecessarily. So if we
subtract the surface of the sphere from that of the six
spherical lunes (4R2(�α + �β + �γ −π)), we have four times
the area of the triangle. From this, it follows that:

A△ = R2
(�α + �β + �γ −π)

β

γ

α

A

B C

Figure II.4: Calculating the area of a convex spherical triangle
using two each of red, blue, and green lunes

From the formula above, we can draw two very import-
ant conclusions:

• The spherical excess obtained by subtracting 180°
from the sum of the interior angles of the triangle is
in direct proportion to the surface area of the spher-
ical triangle. So the larger the triangle, the more its
properties differ from those of Euclidean geometry.

• The sum of the interior angles of a triangle is always
greater than 180°, otherwise the surface would be
negative. However, the sum of the interior angles of a
convex triangle is certainly less than 540°, otherwise
at least one of the angles would have to be concave.

11



Lesson three

Navigation in spherical geometry

III.1 Spherical trigonometry

When examining spherical triangles, we can see that many
properties known from Euclidean geometry still hold.
For example, the sum of two sides is greater than the
third, a larger side corresponds to a larger opposite angle,
or three data uniquely define a triangle. In fact, three
angles are now sufficient to define a triangle, since the
sum of the interior angles is not a fixed value. It can
be seen, therefore, that the rules of sines and cosines
used to calculate unknown data of planar triangles have
counterparts in spherical geometry.

For simplicity, we assume in this section that the sphere
has unit radius so that the sides and their subtended
angles (in radians) are equal. Furthermore, the Cartesian
coordinate system is rotated so that axis z coincides with
one vertex of the triangle, while another vertex of the tri-
angle lies on the plane subtended by axes x and z. Then
the Cartesian coordinates of the vertices can be simply
described using formulae between the polar and Cartesian
coordinates (Fig. III.1. on the next page).

Let us consider case (a) and formulate the volume of the
parallelepiped generated by the vectors A⃗, B⃗, C⃗ starting
from the origin. This is the triple product (determinant)
of the three vectors:∣∣∣∣∣∣∣∣

0 0 1
sinc 0 cosc

sinbcosα sinb sinα cosb

∣∣∣∣∣∣∣∣ = sinc sinb sinα

Case (b) shows the same triangle, but with the co-
ordinate axes rotated. Calculate the volume of the par-
allelepiped again. This time, it is useful to expand the
determinant along the second line:∣∣∣∣∣∣∣∣

sinccosβ sinc sinβ cosβ
0 0 1

sina 0 cosa

∣∣∣∣∣∣∣∣ = sinasinc sinβ

The volume of the parallelepiped cannot depend on the
rotation of the coordinate system. This means that the
two previous expressions must be equal to each other:

sinc sinb sinα = sinasinc sinβ

Simplifying by sinc and rearranging, we get this:

sina
sinα

=
sinb
sinβ

The above relation is very similar to the sine rule of
Euclidean geometry, so we call it the spherical rule of sines
and will use it regularly in the following.

Let us also examine the rotation in figure (c). This
time, let us form the scalar product of the vectors A⃗ and

B⃗. The scalar product can be calculated by multiplying
the lengths of the vectors and the cosine of the angle c
between them. This is quite simple, since the lengths of A⃗
and B⃗ pointing to the surface of a unit sphere are exactly
one. However, it is also possible to calculate the scalar
product by the pairwise multiplication of the coordinates,
and then we should obtain the same result:

1×1×cosc = sinb×sinacosγ +0×sinasinγ +cosb×cosa

Converted to an easy-to-remember form:

cosc = cosacosb+ sinasinbcosγ

The equation obtained above is of fundamental import-
ance in cartography. It is called the spherical rule of cosines,
and it establishes a relationship between three sides and
one angle of a triangle, similarly to rule of cosines used
in secondary schools.

Since a spherical triangle can be defined by three angles,
a formula is missing that allows to determine the length
of at least one side based on the three angles. This has
no analogy in Euclidean geometry. The missing formula
is called the second spherical rule of cosines, the proof of
which is given in App. B:

cosγ = −cosα cosβ + sinα sinβ cosc

The three relations can now be used to compute the
unknown data for any spherical triangle, but sometimes
several steps are required. For this reason, the cotangent
four-part formula is useful in rare cases:*

cotasinb = cosbcosγ + sinγ cotα

For all four formulae, it makes sense to say that it does
not matter which vertex of the triangle is denoted by A, B,
and C, as long as the corresponding notations a,b,c,α,β,
and γ are used consistently.

III.2 Orthodromic navigation

An example of the importance of spherical trigonometry
is the navigation task of finding the direction and the
length of a path between two points of known coordin-
ates. The formulae derived here are still used in marine
navigation and aviation today. Two types of navigation
have developed throughout history, orthodromic and lox-
odromic.

In solving navigation problems, terrestrial geodesics
are called orthodromes. Its clear advantage is that its for-
mulae are guaranteed to show the shortest route to your

* For example, it is easier to use it to find the intersection of great
circles.
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III. Navigation in spherical geometry
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(a) Vertex A on axis z, B on plane xz
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)

(c) Vertex C on axis z, A on plane xz

Figure III.1: Cartesian coordinates of vertices in a spherical triangle

destination. To develop the formulae for the orthodrome,
we will use a spherical triangle with one vertex at the pole
and the other two vertices at the origin and destination.

We want to go from point A to point B in Fig. III.2.
The angle appearing at the northern vertex of the blue
triangle is the difference in longitude λB − λA. We also
know two sides of the triangle, since they supplement the
latitude to 90°. Then we can write the rule of cosines for
the third side to be calculated, which subtends angle s/R°
(converted to degrees) corresponding to the arc length s in
question. Note that cos(90°− δ) = sinδ and sin(90°− δ) =
cosδ!

cos
s
R

°
= sinϕA sinϕB + cosϕA cosϕB cos(λB −λA)

Equator

Prim
e m

er
id

ia
n

s/R°α90
°−
ϕ
A

ϕA

90°−
ϕ
B

ϕB

λB −λAλA
λB

North Pole

A

B

Figure III.2: Calculation of the great-circle distance

In the previous formula, the degree sign next to s/R
warns that the angle in degrees must be converted back
to radians, and only then multiplied by the radius of the
Earth to get the distance s.

There are two ways of calculating the direction of the
orthodrome, i.e. the azimuth defined in Sec. I.2. It is
simpler to formulate using the rule of sines:

sin(s/R)°
sin(λB −λA)

=
cosϕB
sinα

sinα =
sin(λB −λA)cosϕB

sin(s/R)°

But the rule of cosines is also useful:

sinϕB = sinϕA cos
s
R

°
+ cosϕA sin

s
R

°
cosα

cosα =
sinϕB − sinϕA cos(s/R)°

cosϕA sin(s/R)°

For practical calculations, both formulae are needed,
because neither the sine nor the cosine characterizes
the azimuth uniquely: sinα = sin(180° − α) and cosα =
cos(360°−α). Thus, in both cases we have two solutions:
for the sine rule, α and 180° −α; for cosine rule, α and
360° − α. One of the two roots is false, so we have to
consider which solution to accept. Note that negative
azimuths are not used, so if the result of the arc sine is
negative, either 360° must be added to the value or it

13



III. Navigation in spherical geometry

must be subtracted from 180°. The correct decision can
be made by drawing, or by using both formulae to calcu-
late the two solutions for the azimuth, because in this case
there is usually only one common root.

In addition, the sine varies only slightly for nearly right
angles for large differences in the angle, while the same
can be said for the cosine for nearly straight angles. Thus,
for east-west paths, the rule of cosines, while for north-
south paths, the rule of sines provides more numerical
stability.

III.3 Loxodromic navigation

Spirals with constant azimuth on a surface of revolution
are called rhumb lines. Such curves connecting two points
are usually longer than the geodesic.* These lines are
called loxodromes on Earth. It can be seen that the meridi-
ans on a surface of revolution are not only orthodromes,
but also loxodromes corresponding to azimuth 0°. Al-
though parallels are typically not orthodromes, they are
loxodromes of azimuth 90°. The Equator is an exception
because it is both an orthodrome and a loxodrome.

The navigational importance of the loxodrome is that
our heading may maintain a constant bearing to the com-
pass, which is easily achieved. Counter-intuitively, to do
this, you have to keep turning the vehicle (Fig. III.3).† It
is typically barely longer than the orthodrome, and in the
pre-GPS era, the changing azimuth of the orthodrome
would have been difficult to follow, so it used to be pop-
ular among sailors. Today’s air navigation has moved to
more economical, orthodromic navigation.‡

α

α

Figure III.3: The path of a rhumb line

Plot an infinitesimal section of length ∆s along the lox-
odrome of azimuth α. The arc lengths along the parallel
and meridian (small arcs of circles) can be calculated from

* Except on the cylinder, where geodesics and rhumb lines always
coincide.

† Loxodromes are usually spiral curves. Before reaching the pole,
they wind around it infinitely many times in sharper turns, yet their
length is still finite.

‡ This is only partly true: points are calculated along the orthodrome,
but traffic between two calculated points still follows the loxodrome.
This technique was used to a limited extent before GPS.

the radii of the corresponding parallel and meridian and
from the subtended angles. Fig. III.4 clearly shows that:

tanα =
Rcosϕ�∆λ
R�∆ϕ�∆ϕ tanα

cosϕ
= �∆λ

∆
sR�∆ϕ

Rcosϕ�∆λ

α

Figure III.4: An infinitesimal section of a loxodrome

Integrate both sides between the starting point A and
the end point B, knowing that α is constant:

ϕBU
ϕA

tanα
cosϕ

dϕ =

λBU
λA

dλ

tanα
[
lntan

(
45° +

ϕB
2

)
− lntan

(
45° +

ϕA
2

)]
= �λB −�λA

tanα =
�λB −�λA

lntan(45° +ϕB/2)− lntan(45° +ϕA/2)

So we have found the azimuth of the loxodrome
between points A and B. However, it is important to note
that this time we have two solutions: tanα = tan(180°+α).
Whether we need to add 180° is a matter of common sense.
The arc tangent function of the calculator can also give a
negative value, in which case we need to add 180 or 360
degrees (again, using common sense to decide which).

It is important to note that the difference of longitudes
in the numerator is always calculated strictly in radians!
The difference in longitudes must always be within the
range ±180° (±π)! Larger longitude differences for paths
crossing meridian 180° must be constrained within the
range by adding or subtracting 360° (2π)!

In the previous calculation, the antiderivative of
1/cosϕ was obtained deus ex machina, so check this by
differentiating!

[
lntan

(
45° +

ϕ

2

)]′
=

1

2 tan
(
45° + ϕ

2

)
cos2

(
45° + ϕ

2

)
=

1

2sin
(
45° + ϕ

2

)
cos

(
45° + ϕ

2

) =
1

sin(90° +ϕ)
=
1

cosϕ

Note that some textbooks do not write the antiderivat-
ive of 1/cosϕ as lntan(45° +ϕ), but as a seemingly very
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III. Navigation in spherical geometry

different expression, but we are not scared:

lntan
(
45° +

ϕ

2

)
= ln

√√√√
2sin2

(
45° + ϕ

2

)
2cos2

(
45° + ϕ

2

)
= 12 ln

sin2(45°+ϕ
2 )+cos2(45°+ϕ

2 )+sin2(45°+ϕ
2 )−cos2(45°+ϕ

2 )
cos2(45°+ϕ

2 )+sin2(45°+ϕ
2 )+cos2(45°+ϕ

2 )−sin2(45°+ϕ
2 )

=
1
2

ln
1− cos(90° +ϕ)
1+ cos(90° +ϕ)

=
1
2

ln
1+ sinϕ
1− sinϕ

= artanhsinϕ

So, if you want to be cool, you can calculate like this:

tanα =
�λB −�λA

artanhsinϕB − artanhsinϕA

We still do not know how far we have to travel. To
calculate the distance, let us formulate the cosine of α
from the figure:

cosα =
R�∆ϕ
∆s

∆s =
R�∆ϕ
cosα

Let us integrate both sides again, α is still constant, and
the constant of integration on the left side can be omitted,

because s is zero at the starting point:

U
ds =

ϕBU
ϕA

R
cosα

dϕ

s = R
�ϕB −�ϕA

cosα

If the distance is negative despite the fact that the stu-
dent, giving his word of honour, has computed everything
correctly and has not swapped the starting and ending
points during the process, and even swears to keep in
mind the signs of the hemispheres and constraining the
difference in longitudes �λB −�λA within the range ±π by
adding or subtracting 2π, then he has chosen the wrong
one of the two solutions for the azimuth. Then add 180°
to α and invert the sign of s.

For formulae of both the loxodrome and the orthodrome,
it is very important to use the correct signs. Our formulae
give the correct result if we substitute north latitude and
east longitude with positive signs and south latitude and
west longitude with negative signs. Failure to do so for
paths crossing the Equator or the Prime meridian will
lead to a capital error! Among formulae discussed so far,
this remark is also true for the area of the geographical
quadrangle.
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Lesson four

Curvature and arc length on the ellipsoid

IV.1 Meridional radius of curvature

The spherical geometry discussed so far was based on a
surface of constant curvature. This cannot be said for the
ellipsoid of revolution, whose curvature varies from place
to place. The internal scale relations of such surfaces are
discussed by the discipline of differential geometry. Let us
first define some necessary concepts.

The osculating circle of a smooth plane curve at a given
point is the circle tangent to the curve at the point in
question, its tangent coincides with that of the curve (so
its centre is on the normal of the curve) and its second
derivative is equal to that of the curve at the point. The
latter causes the tangents of the curve and the osculating
circle to be close to each other near the point (Fig. IV.1), so
if one draws perpendiculars to the curve close to the point,
their intersection will tend to the centre of the osculating
circle. The radius of curvature of the curve at a point is the
radius of the osculating circle at that point.

ϱ

P

Figure IV.1: The radius of curvature ϱ of a plane curve at point P

The curve obtained as the intersection of a surface and
an arbitrary plane is called the section of the surface. All
sections of an ellipsoid of revolution are ellipses. The
normal section of a surface at a point is the section whose
plane contains the point and the normal (local vertical)
of the surface. All other sections containing the point are
called oblique sections. The radius of curvature of a surface
for a given point and direction is the radius of curvature
of the normal section that passes through that point and
its plane contains that direction. We will consider normal
sections containing and perpendicular to meridians.*

The meridional radius of curvature, denoted by M(Φ),
is the radius of curvature on the ellipsoid in the direc-
tion of meridians (Fig. IV.2) Consider a point at latitude
Φ on the meridian and plot perpendiculars at latitudes
Φ1 =Φ −∆Φ/2 and Φ2 =Φ +∆Φ/2, as ∆Φ → 0! To calcu-
late the angle subtended by the arc of the osculating circle

* The reason why it is sufficient to consider the curvature of these two
directions is deeply rooted in the foundations of differential geometry:
the German mathematician Gauss showed that if we know the extremal
values of the curvatures at a given point on a surface, we can calculate
the curvature of the smooth elementary surface in any direction. He also
proved that the minimum and maximum curvatures always occur in
directions perpendicular to each other, and that on surfaces of revolution
the direction of one of the extrema is always in the plane of the meridian.

between latitudesΦ1 andΦ2, consider the triangle of blue
legs in part (b). Its upper right angle is Φ1 and its upper
left angle is 180°−Φ2. The sum of the interior angles is
180°, so the third angle must be Φ2 −Φ1 = ∆Φ . Multiply-
ing this by radius M(Φ) gives the small arc length of the
osculating circle between the two points: M(Φ)�∆Φ .

a

b

r

z

M
(Φ

)

Fig. (c)

Fig. (b)

O
sculating

circle
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Φ

(a) Overview
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(b) Lower rectangle magnified

a

b

r

z

M
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∆r

−∆r/sinΦΦ

(c) Upper rectangle magnified

Figure IV.2: Calculating the meridional radius of curvature

The limit of the secant passing through latitudes Φ1
and Φ2 is the tangent and is therefore perpendicular to
the normal at latitude Φ . The other arm of the upper
angle in the right triangle at part (c) is perpendicular to
the plane of the Equator, so this angle is equal to Φ . From
this, the chord length between the two outer points is
−∆r/sinΦ , where the horizontal leg ∆r is the tiny change
in the radius of the parallel with respect to the difference
in latitude ∆Φ (the negative sign in the formula makes
the chord length positive: ∆r is negative in the North-
ern Hemisphere, while sinΦ is negative in the Southern
Hemisphere). If ∆Φ → 0, the distance between these two
points along the osculating circle and the chord is the
same:

lim
∆Φ→0

M(Φ)�∆Φ = lim
∆Φ→0

−∆r
sinΦ

Recall that we have already calculated the radius r of
the parallel in Sec. I.4!

r =
a2 cosΦ

√
a2 cos2Φ + b2 sin2Φ

=
acosΦ√

cos2Φ + b2

a2
sin2Φ
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IV. Curvature and arc length on the ellipsoid

=
acosΦ√

1− sin2Φ + b2

a2
sin2Φ

=
acosΦ

√
1− e2 sin2Φ

From the first equation, M(Φ) can be expressed, using
that the limit of ∆r/�∆Φ is the derivative:

M(Φ) = lim
∆Φ→0

−∆r�∆Φ sinΦ
=
−1

sinΦ
dr
dΦ

=
−1

sinΦ

−asinΦ
√
1− e2 sin2Φ − acosΦ −2e

2 sinΦ cosΦ
2
√
1−e2 sin2Φ

1− e2 sin2Φ

= a
1− e2 sin2Φ − e2 cos2Φ

(1− e2 sin2Φ)3/2
=

a(1− e2)
(1− e2 sin2Φ)3/2

Now also calculate the arc length of the meridian
between latitudes Φ1 and Φ2! To do this, we split the
arc of the ellipse into tiny segments approximated by
arcs of circles. In the previous derivation, we obtained
∆s =M(Φ)�∆Φ for the small arc length (Fig. IV.3). Refin-
ing partitions, the summation becomes an integration:

s =

Φ2U
Φ1

M(Φ)dΦ =

Φ2U
Φ1

a(1− e2)
(1− e2 sin2Φ)3/2

dΦ

The antiderivative of the integrand above cannot be for-
mulated using standard mathematical functions because
it is an elliptic integral.* It can be solved by numerical ap-
proximation or by using tables. Modern GIS typically
uses Fourier series for approximation.

a

b

r

z

N
(Φ

)

M
(Φ

)

M(Φ) �∆ΦN (Φ)cosΦ

Φ

Φ

Figure IV.3: Radii of curvature on the ellipsoid of revolution

IV.2 Prime-vertical radius

The radius of curvature of the normal section perpen-
dicular to the meridian is the transverse or prime-vertical
radius of curvature, denoted by N (Φ). Before calculating
it, perform a thought experiment on an arbitrary surface
of revolution. Select two points symmetrically on a nor-
mal section perpendicular to the meridian of the point
in question. From each of these two points, drop a per-
pendicular line onto the surface. Then, due to symmetry,

* Elliptic integrals are called as such, because they were first dis-
covered when the circumference of an ellipse was computed. Since then,
they have been found to occur in countless fields of science. They can
be used to derive the formula for many conformal projections elegantly.
See Sec. XXIX.1.

the intersection of the two lines must lie on the axis of
rotation. Now approach the two points simultaneously
and symmetrically towards the point in question. The
normals at the two points will then be closer and closer
to the plane of the normal section, while their intersec-
tion will remain on the axis of revolution. It follows that
centre of osculating circle is also on the axis of revolution.
In this case, it can be seen from the figure that the radius
r of the parallel is r = N (Φ)cosΦ .† From the previous
formula for r:

N (Φ) =
a

√
1− e2 sin2Φ

The arc length along parallels of radius r on an ellipsoid
of revolution between longitudes Λ1 and Λ2 can be for-
mulated as the product of the radius and the subtended
angle:

s =N (Φ)cosΦ
(�Λ2 −�Λ1)

IV.3 Latitude, longitude, and height

in space

Satellite navigation measures the distance between the
satellite and the instrument based on the time the signal
is received. The known distance from each satellite rep-
resents a sphere. We are at the common intersection point
of them. The coordinates of the intersection point can be
calculated in an x,y,z Cartesian coordinate system. How
do we get geographic coordinates from this?

Less exciting, but equally useful, is the question of
obtaining the Cartesian coordinates of a point from its
geographic coordinates. This may be needed if we want to
treat points referenced to differenly sized and positioned
ellipsoids in a uniform coordinate system. It is easy to see
that the two problems are the inverse of each other.

Dealing first with the second problem, let us plot the
ellipsoidal meridian on which we are located on the plane
r,z. Here, the horizontal coordinate r on the surface of
the ellipsoid will coincide exactly with the radius of the
parallel, and z will coincide with the axis z of the spatial
system. We are at latitude Φ and height h above the el-
lipsoid. Assuming a small height, we measure the height
in a straight line perpendicular to the ellipsoid. Then we
can read from Fig. IV.4:

r = r0 + hcosΦ

z = z0 + hsinΦ

The radius r0 of the parallel is already known
(N (Φ)cosΦ), and the formula z0 has already been cal-
culated in Sec. I.4, which we now rearrange:

z0 =
b2 sinΦ

√
a2 cos2Φ + b2 sin2Φ

=
a2(1− e2) sinΦ

√
a2 cos2Φ + b2 sin2Φ

=
a(1− e2) sinΦ
√
1− e2 sin2Φ

= (1− e2)N (Φ) sinΦ

We know from the definition of longitude (Sec. I.3) that
x = r cosΛ and y = r sinΛ. Knowing this, we can use the

† Here we have in fact proven a special case of Meusnier’s theorem,
well known in differential geometry. This theorem is not only true for a
surface of revolution, and the ratio between the radii of curvature of any
normal section and oblique section tangent to each other at the point in
question is found to be the cosine of the angle between the planes of the
sections.
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IV. Curvature and arc length on the ellipsoid

a

b

r

z

h

r0

hcosΦ

hsinΦ

z0

Φ

Φ
Φ

Figure IV.4: Coordinates of a point at height h above ellipsoid

previous relation to calculate:

x = [N (Φ) + h]cosΦ cosΛ

y = [N (Φ) + h]cosΦ sinΛ

z = [(1− e2)N (Φ) + h] sinΦ

Now we know where a point of a given geographic
coordinate is located in the Cartesian coordinate system.
For the other problem (i.e. GPS navigation), we need to
invert this. Dividing the second equation by the first one
gives us:

tanΛ =
y

x
So we already know the longitude. The squared sum of

the first and second equations:

x2 + y2 = [N (Φ) + h]2 cos2Φ

h =

√
x2 + y2

cosΦ
−N (Φ)

Substitute this into the formula z:

z =

√x2 + y2

cosΦ
− e2N (Φ)

sinΦ

Transforming the formula above, we get a quartic equa-
tion of tanΦ . The quartic equation can be solved, for
example, by Ferrari’s method, the derivation for which
is given in App. C for students who are inresistably at-
tracted by the beauties of mathematics. Then, knowingΦ ,
h can be obtained from the formula before the previous
one. It is important to note that h is not measured above
the sea level, but is the height above ellipsoid, which is
corrected by the value of geoid undulation by our GPS
device.

The derivation of closed conversion formulae is cred-
ited to Borkowski. Although closed formulae are more
commonly used in modern satellite navigation, for ease
of computation, Bowring’s formula is also given, which
gives an approximation to Φ that can be refined to an
arbitrary precision. The recursive formula:

tanΦ ′′ =
z+ (e′)2b sin3Θ ′√
x2 + y2 − e2acos3Θ ′

Where the parametric latitude tanΘ = b/a tanΦ con-
verted from the corrected Φ (Sec. I.4) is substituted back

into the formula above to get a further corrected Φ . The
proposed initial value of Θ is derived from the condition
h ≈ 0:

tanΘ ≈ az

b
√
x2 + y2

In general, even one iteration gives surprisingly good
accuracy.

IV.4 Area of the ellipsoidal

quadrangle

Another possible use of radii of curvature is to calcu-
late the surface area of the ellipsoidal geographical quad-
rangle. Recall that on a sphere, this could be calculated by
partitioning the sphere into small rectangles as illustrated
in Fig. II.1. The only difference is that now the length of
the base parallel is N (Φ)cosΦ(�Λ2 −�Λ1), while the length
of the tiny meridian arc on the ellipsoid is M(Φ)�∆Φ . The
summation of the small rectangles is also an integration:

A =

Φ2U
Φ1

M(Φ)N (Φ)cosΦ
(�Λ2 −�Λ1)dΦ

= a2(1− e2)
(�Λ2 −�Λ1)Φ2U

Φ1

cosΦ
(1− e2 sin2Φ)2

dΦ

The antiderivative of the integrand:U
cosΦ

(1− e2 sin2Φ)2
dΦ

=
U

cosΦ + e2 sin2Φ cosΦ
2(1− e2 sin2Φ)2

+
cosΦ(1− e2 sin2Φ)
2(1− e2 sin2Φ)2

dΦ

=
U

cosΦ + e2 sin2Φ cosΦ
2(1− e2 sin2Φ)2

+
ecosΦ

2e(1− e2 sin2Φ)
dΦ

=
sinΦ

2(1− e2 sin2Φ)
+
1
2e

artanh(e sinΦ) + c

The last step can be checked by deriving back. Know-
ing that the area hyperbolic tangent can be written as
1/2 ln[(1 + x)/(1 − x)], we can substitute it back into the
equation, obtaining the formula for the surface of the
quadrangle:

A = a2(1− e2)
(�Λ2 −�Λ1)[ sinΦ2

2(1− e2 sin2Φ2)

+
1
4e

ln
1+ e sinΦ2
1− e sinΦ2

− sinΦ1
2(1− e2 sin2Φ1)

− 1
4e

ln
1+ e sinΦ1
1− e sinΦ1

]
Substituting ±180° for the longitudes and ±90° for the

latitudes gives the surface of the entire ellipsoid:

A� = 4a2π(1− e2)
[

1
2(1− e2)

+
1
4e

ln
1+ e
1− e

]
= 2a2π

(
1+
1− e2

2e
ln
1+ e
1− e

)
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Lesson five

Geodetic problems

V.1 Geodetic problems on the plane

Geodetic instruments are mainly used to measure dis-
tance and angle (direction), while we need the coordin-
ates of the measured point. It is therefore very common to
determine the coordinates of an unknown point in terms
of the azimuth and distance measured from a point. This
is called the first or direct geodetic problem. For the ori-
entation of instruments and for the determination of the
North direction, we reverse this, and we calculate dis-
tance and azimuth from coordinates. This is the second or
inverse geodetic problem.

Our measurements are most often made at such small
distances that we can neglect the curvature of the Earth
and use the formulae of ordinary Euclidean plane geo-
metry. Let us look at Fig. V.1. The formulae for the direct
geodetic problem are easy to read (for distance s and azi-
muth α):

xB = xA + s sinα

yB = yA + scosα

y

xA

y B
−
y A

=
sc

os
α

B

xB − xA = s sinα

s

α

Figure V.1: Geodetic problems on the plane

The formulae of the inverse problem are derived from
the Pythagorean theorem:

s =
√

(xB − xA)2 + (yB − yA)2

tanα =
xB − xA
yB − yA

We have two solutions for the azimuth, because the
period of the tangent is 180°. So we may need to add
180° (or 360°) to the result. The function arctan2 was in-
vented for the discussion between the two solutions. The
exact syntax is different in every programming language,
usually a comma or semicolon is written in place of the
fraction bar: atan2(∆x,∆y) instead of atan(∆x/∆y), but
in Excel, for example, the order of the denominator and
numerator is reversed. Always check the manual of the
programming language! Beware that this can also give a

negative result, in which case 360° must be added. Do not
use arctan2 everywhere as a magic word without think-
ing! This is specifically for calculating azimuth, but it
can also be used for formulae involving the tangent of
longitude.

V.2 Geodetic problems on the sphere

To calculate the spherical geodetic problems, return to
Fig. III.2. For the first problem, ϕA,λA, s and α are known,
the question is the position of pointB. Apply the spherical
rule of cosines for the unknown ϕB.

sinϕB = sinϕA cos
s
R

°
+ cosϕA sin

s
R

°
cosα

The degree sign warns that in the formula, s/R is always
in radians, if the calculator is set to degrees, it must be
converted from radians to degrees! Now we can apply
the spherical rule of sines for the unknown difference in
longitude.

cosϕB
sinα

=
sin(s/R)°

sin(λB −λA)

λB = λA + arcsin
sinα sin(s/R)°

cosϕB

Note that the two-valued arc sine is not a problem here,
because longitude differences greater than ±90° are ex-
tremely rare in geodetic practice.

The second problem, the calculation of distance and azi-
muth on a sphere, has already been covered in Sec. III.2,
so it will not be discussed again. With regard to the cal-
culation on computers, let me add the suggestion that
azimuth can be obtained from the cotangent four-part
formula. This expression is suitable to cast the function
arctan2 so that the two-valued formulae can be resolved:

tanϕB cosϕA = sinϕA cos(λB −λA) + sin(λB −λA)cotα

tanϕB cosϕA − sinϕA cos(λB −λA)
cotα

= sin(λB −λA)

tanα =
sin(λB −λA)

tanϕB cosϕA − sinϕA cos(λB −λA)

V.3 Metacoordinates

A special application of the spherical problems of geodesy
is the graticule rotation, which means that not the Earth’s
axis of rotation but an arbitrarily chosen other axis is con-
sidered to be the axis of revolution (Fig. V.2). The poles
so designated are called metapoles, and the corresponding
coordinates are called the metacoordinates. Its two para-
meters (metalatitude and metalongitude) are distinguished
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V. Geodetic problems

from the geographic coordinates by a prime. The posi-
tioning of the rotated system is given by the geographic
coordinates of the metapole. The prime metameridian is
defined as always passing through the North Pole.*

Figure V.2: Rotating the graticule

First, the coordinates of the metapole ϕ0,λ0 are given.
As shown in Fig. V.3, the point, the pole, and the metapole
define a spherical triangle, for which the spherical rule
of cosines can be applied (this is essentially the second
geodetic problem):

sinϕ′ = sinϕ sinϕ0 + cosϕ cosϕ0 cos(λ−λ0)

90
°−
ϕ

90°−
ϕ
0

Prime metameridian

90°−ϕ
′

M
et

ae
qu

at
or

λ′

λ0 −λ

North Pole

P

Metapole

Figure V.3: Metacoordinates knowing the metapole

The missing λ′ can now be calculated from the spher-
ical rule of sines:

cosϕ′

−sin(λ−λ0)
=

cosϕ
sinλ′

sinλ′ = −
sin(λ−λ0)cosϕ

cosϕ′

Or even from the rule of cosines:

sinϕ = sinϕ′ sinϕ0 + cosϕ′ cosϕ0 cosλ′

cosλ′ =
sinϕ − sinϕ′ sinϕ0

cosϕ′ cosϕ0
Neither the rule of sines and cosines is sufficient by

itself, since both give two solutions. The advantages of
* It only makes sense to use a different placement in non-conical

projections. See Sec. XIX.2.

both formulae can be combined by dividing them by each
other and then substituting sinϕ′ :

tanλ′ =
− sin(λ−λ0)cosϕ

cosϕ′

sinϕ−sinϕ′ sinϕ0
cosϕ′ cosϕ0

= −sin(λ−λ0)cosϕ cosϕ0
sinϕ−[sinϕ sinϕ0+cosϕ cosϕ0 cos(λ−λ0)] sinϕ0

= −sin(λ−λ0)cosϕ cosϕ0
sinϕ−sinϕ(1−cos2ϕ0)−cosϕ cosϕ0 cos(λ−λ0) sinϕ0

= −sin(λ−λ0)cosϕ cosϕ0
sinϕ−sinϕ+sinϕ cos2ϕ0−cosϕ cos(λ−λ0)cosϕ0 sinϕ0

=
−sin(λ−λ0)

tanϕ cosϕ0 − cos(λ−λ0) sinϕ0

The resulting formula is suitable for using the function
arctan2 so that λ′ can be uniquely determined.

The formulae for the inverse calculation (this is essen-
tially the first geodetic problem) can be derived in the
same way:

sinϕ = sinϕ′ sinϕ0 + cosϕ′ cosϕ0 cosλ′

tan(λ−λ0) =
−sinλ′

tanϕ′ cosϕ0 − cosλ′ sinϕ0

Sometimes it may also be useful to add additional rela-
tions. Rearranging the rule of sines for λ′ :

sinλ′ cosϕ′ = −sin(λ−λ0)cosϕ

Furthermore, from the previous relations:

cosλ′ cosϕ′ =
sinλ′ cosϕ′

tanλ′
=

−sin(λ−λ0)cosϕ
−sin(λ−λ0)

tanϕ cosϕ0−cos(λ−λ0) sinϕ0

= cosϕ[tanϕ cosϕ0 − sinϕ0 cos(λ−λ0)]
= sinϕ cosϕ0 − cosϕ sinϕ0 cos(λ−λ0)

In transverse aspect (ϕ0 = 0), the formulae are greatly
simplified since sinϕ0 = 0 and cosϕ0 = 1:

sinϕ′ = cosϕ cos(λ−λ0)

sinλ′ =
sin(λ−λ0)cosϕ

cosϕ′
=

sin(λ−λ0)cosϕ√
1− cos2ϕ cos2(λ−λ0)

cosλ′ = −
sinϕ
cosϕ′

= −
sinϕ√

1− cos2ϕ cos2(λ−λ0)

The sign of trigonometric functions of λ′ has just been
reversed because otherwise the resulting maps would be
oriented south-up, not north-up.

The other possibility is when the intersection of the
metaequator and the prime metameridian is known. Look
at Fig. V.4. The reader may notice that only two data
of the spherical triangle have changed compared to the
previous one: instead of 90°−ϕ0, the corresponding side
isϕc, so cosϕc should be written instead of sinϕ0 and vice
versa sinϕc should be written instead of cosϕ0. The other
difference is that the angle at the pole is 180° + λc − λ
instead of λ0 − λ. Because of the latter, we substitute
−cos(λ−λc) for cos(λ−λ0) and sin(λ−λc) for −sin(λ−λ0)
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V. Geodetic problems

(of course, the formulae will be the same if derived again
as before):

sinϕ′ = sinϕ cosϕc − cosϕ sinϕc cos(λ−λc)

tanλ′ =
sin(λ−λc)

tanϕ sinϕc + cos(λ−λc)cosϕc
sinϕ = sinϕ′ cosϕc + cosϕ′ sinϕc cosλ′

tan(λ−λc) =
sinλ′

tanϕ′ sinϕc − cosλ′ cosϕc

Metaequator

90
°−
ϕ
c

Prime metameridian

ϕc

90°−
ϕ ′

90°−ϕ

180°− (λ−λc)

λ−λc

λ′
Metapole

North Pole

P

Central point

Figure V.4: The intersection of the metaequator and the prime
metameridian is known

The purpose of the graticule rotation is to move the
mapped area on the sphere into the areas of favourable
distortion. For example, as shown in Fig. IX.2, a stereo-
graphic projection is the best possible conformal projec-
tion for circles centred on the pole. If our area is roughly
circular but is not near the pole, we simply rotate the
graticule so that the metapole falls in the centre of the
area we want to display. In the projections rotated so,
we simply substitute metacoordinates for latitudes and
longitudes.

V.4 Geodetic problems on the

ellipsoid

Imagine a point-like trolley on a surface of revolution
and push it with a unit initial speed. The trolley is only
affected by the gravity of surface, friction is neglected.
Gravity is perpendicular everywhere to the surface of
revolution considered as an equipotential surface, and
therefore also to the path of the trolley. Thus, gravity does
not do any work on the trolley, its speed remains constant.
Since it is not subject to lateral forces, its trajectory can
be considered to be straight within the surface, i.e. the
trolley follows a geodesic on the surface of revolution.

Let the current azimuth of the trajectory of the trolley
be α, then the component of its velocity in the direction
of parallels is sinα. This is also the peripheral velocity of
the trolley with respect to the axis of rotation of the sur-
face. The direction of the gravity force (the normal of the
surface) intersects the axis of rotation due to symmetry,
so it has no torque with respect to the axis of rotation.

Due to the conservation of angular momentum, the peri-
pheral velocity of the trolley travelling along the geodesic
multiplied by the radius r of the parallel (i.e. the distance
from the axis of rotation) must be constant (Clairaut’s
relation):*

r sinα = const·

At first glance, we did not learn much about the
geodesics on the ellipsoid of revolution, although this
information alone should be enough to determine the
path. Let us start with the direct geodetic problem! From
Fig. V.5, we can see that:

cosα =
M(Φ)�∆Φ

∆s

sinα =
N (Φ)cosΦ�∆Λ

∆s

∆
sM(Φ)�∆Φ

N (Φ)cosΦ�∆Λ

α

Figure V.5: An infinitesimal section of an ellipsoidal geodesic

Rearrange, knowing that the ratio between infinitesim-
ally small distances tends to the derivative:

dΦ
ds

=
cosα
M(Φ)

dΛ
ds

=
sinα

N (Φ)cosΦ

We will also need the following derivative:

dr
ds

=
dN (Φ)cosΦ

dΦ
dΦ
ds

=
[

dN (Φ)
dΦ

cosΦ +N (Φ)
dcosΦ

dΦ

]
cosα
M(Φ)

=

 ae2 sinΦ cosΦ

(1− e2 sin2Φ)3/2
cosΦ −N (Φ) sinΦ

 cosα
M(Φ)

=M(Φ)
e2 sinΦ cos2Φ
1− e2

cosα
M(Φ)

−N (Φ) sinΦ
cosα
M(Φ)

=
e2 cos2Φ sinΦ cosα

1− e2
− a(1− e2 sin2Φ)3/2 sinΦ cosα

a(1− e2)
√
1− e2 sin2Φ

=
e2(1− sin2Φ) sinΦ cosα − (1− e2 sin2Φ) sinΦ cosα

1− e2

=
e2 − e2 sin2Φ − 1+ e2 sin2Φ

1− e2
sinΦ cosα

= −sinΦ cosα

* In fact, we are back in the belly of differential geometry. A rigorous
proof of the relation obtained here requires calculus of variations and
the solution of complicated differential equations.
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V. Geodetic problems

Yes, derivation can sometimes be a lot of fun! While
we’re at it, let us also derive Clairaut’s relation!

dr
ds

sinα + r cosα
dα
ds

= 0

N (Φ)cosΦ cosα
dα
ds

= sinΦ cosα sinα

dα
ds

=
tanΦ sinα
N (Φ)

A function f differentiable any times in the neighbour-
hood of the point x = a can be approximated with arbit-
rary precision by its Taylor series, i.e:

f (x) = f (a)+
x − a
1!

f ′(a)+
(x − a)2

2!
f ′′(a)+

(x − a)3

3!
f ′′′(a)+ . . .

Of course, exact equality would only exist if all the
infinitely many members were added together, but the
series converges quickly, so the small summands at the
end of the series can be ignored.* Now let us see why this
was necessary! let us formulate ΦB and ΛB as a function
of the distance s from the point ΦA,ΛA. Let Φ and Λ be
decomposed into Taylor series around s = 0!

ΦB =ΦA +
s
1!

dΦ
ds

∣∣∣∣∣
s=0

+
s2

2!
d2Φ
ds2

∣∣∣∣∣
s=0

+
s3

3!
d3Φ
ds3

∣∣∣∣∣
s=0

+ . . .

ΛB =ΛA +
s
1!

dΛ
ds

∣∣∣∣∣
s=0

+
s2

2!
d2Λ
ds2

∣∣∣∣∣
s=0

+
s3

3!
d3Λ
ds3

∣∣∣∣∣
s=0

+ . . .

The first derivatives are known, while the higher order
derivatives follow naturally from further derivations of
the first derivatives. If we look at the formulae of the
derivatives of Φ and Λ, we see that they also depend on
s through α, but this is not a problem, since we have
calculated the derivative of α, so we can substitute it
while using the chain rule.

This method is due to Legendre. Although its deriva-
tion is insightful and relatively simple to understand, it
is not very applicable in practice. The reason is that it
converges very slowly, the sixth derivative is needed for
geodetic accuracy, and these higher order derivatives are
extremely difficult to compute. In addition to this, the
high-degree terms in s makes the solution of the inverse
problem even more difficult: Then s is the unknown, and
there is a solver formula only for equations containing
the fourth power of s.

Geodesists typically use Gauss’s method, which decom-
poses the function into a Taylor series around the bi-
sector between the two points, resulting in much faster
convergence (it is sufficient to consider the second de-
rivative). The disadvantage of this method is that the
coordinates of the bisector are not known, and one can
get better results by iteration after a first guess.

All the previously discussed methods assumed that
s is relatively short (< 1000 km). For longer distances,
exact solutions are needed. A popular solution is Bessel’s
one, which reduces the problem to the simple spherical

* The method works with all smooth functions, and can be used to
efficiently approximate complicated functions. The pocket calculator,
for example, uses Taylor series to calculate trigonometric functions.

geodetic problems and then corrects for the difference
between the sphere and the ellipsoid by elliptic integrals.
Bessel’s formulae were adapted for computer execution
by Karney. Modern open-source GIS almost invariably
uses his formulae, and their results are considered highly
reliable, in contrast to Vincenty’s formulae in slightly
older packages. The latter converge only at distances
shorter than 10 000 km.

The calculation of long geodesics also provides an op-
portunity to illustrate them. Fig. V.6 shows that, unlike
the sphere, ellipsoidal geodesics do not return to them-
selves but move a bit back. The only exceptions are the
circular Equator and the elliptical bimeridians.

North Pole

Equator

B
im

er
id

ia
n

Figure V.6: Paths of geodesics on an ellipsoid (f = 1/10)

The results are used in satellite remote sensing. The
orbit of a satellite is a geodesic (remember the trolley).
Some satellites orbit in a heliosynchronous orbit, i.e. they
always pass over areas at the same local time to provide
the same light conditions. As the Earth orbits the Sun, the
orbital plane of the satellite must be constantly varied to
maintain a constant angle with the Sun (i.e. the satellite’s
orbital plane rotates 90° in three months, see Fig. V.7).
On a spherical Earth, this would be impossible because
spherical geodesics are flat curves and satellites would
not change their orbital plane. On the ellipsoid, however,
only the meridians and the Equator are plane curves, the
orbital planes of the other geodesics precess. If the orbit
subtends just a tiny angle (∼ 1°) with the meridians, it is
possible to achieve a tiny precession of the geodesic that
changes the orbital plane of the satellite just as much as
we need. Without the not-so-friendly calculations above,
there would be no LANDSAT, SPOT and many other sim-
ilar successful projects.

Sun

Figure V.7: Precession of a heliosynchronous orbit
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Lesson six

The basics of map projections

VI.1 The Theorema Egregium

Take a round pizza slice and grab it by the edge! The tip
of the pizza slice towards you will immediately bend and
the delicious toppings will run off! A common solution is
to slightly lift the two corners of the pizza slice and bend
them into a curve. This will keep the pizza slice almost
horizontal. How is this possible, and how can you start a
lecture on map projections with such an example?

To examine the phenomenon, we introduce the concept
of Gaussian curvature. The curvature of a curve is the
signed reciprocal of its radius of curvature introduced in
Sec. IV.1 (the sign depends on whether the turn is to the
right or left). The curvature of a smooth surface is the
curvature of its normal section (Sec. IV.1), which depends
on position and direction. The Gaussian curvature of a
surface at a given point is the product of the minimal and
maximal curvatures at that point.

Some examples: the curvature of a plane is zero in
all directions, so is also the Gaussian curvature. The
cone has no curvature in the direction of the generating
lines and positive curvature in all other directions. Con-
sequently, the Gaussian curvature is zero (since the min-
imal curvature can be multiplied by anything). The Gauss-
ian curvature of saddle-shaped potato crisps is negative
since the extremal curvatures have opposite signs (oppos-
ite directions). The curvature of the sphere at all points
and in all directions is 1/R, so its Gaussian curvature is
constant (positive) 1/R2. The radii of curvature of an
ellipsoid of revolution with major semi-axis a and first
eccentricity e are (Sec. IV.1–IV.2):

N (Φ) =
a

√
1− e2 sin2Φ

M(Φ) =
a(1− e2)

(1− e2 sin2Φ)3/2

The Gaussian curvature of the ellipsoid of revolution
varies with latitude: 1/N (Φ)M(Φ).

Gauss’s famous theorem, the Theorema Egregium (re-
markable theorem), states: a distortion-free mapping (pre-
serving distances, angles, and areas) can be established
between parts of two smooth surfaces if and only if their
Gaussian curvature is the same for each point. In other
words, there are strict conditions for distortion-free map-
pings (note that twisting a flat slice of pizza is a distortion-
free mapping):

• Both the cone and the plane have zero Gaussian
curvature, so a distortion-free mapping between
them is possible. The flat pizza slice can be bent
into a cone.

• The Gaussian curvature of the sphere is constant pos-
itive. There is no distortion-free projection between

sphere and plane. If you bend the pizza slice in one
direction, you cannot simultaneously twist it in the
direction perpendicular to it. It is not possible to
cover even a part of a sphere with a slice of pizza
without wrinkling or tearing.

• The Gaussian curvature of the rotation ellipsoid, al-
though also positive, is only constant along the par-
allels. It is not possible to map the entire ellipsoid
of revolution onto the sphere without distortion, but
it is possible to map the infinitesimally small neigh-
bourhood of a selected latitude (see Sec. IX.3).

• Potato crisps are fried into surfaces with negative
Gaussian curvatures (saddles) because they give great
stability: they cannot be bent into other shapes
without distortion.

The proof of Theorema Egregium is extremely complic-
ated, it uses second-order partial derivatives and tensor
algebra.

VI.2 What is a map projection?

The relation f : R2 ⊃→ R
2 between some parametriza-

tions of two smooth surfaces is called a map projection.
The domain is called the reference frame, the codomain is
the mapped plane. The rule of association, also called the
formulae of the projection, is usually given in the form of
x = f1(ϕ,λ), y = f2(ϕ,λ).

We can make the following practical assumptions for
map projections, but counterexamples can be found for
all of them:

• The reference frame should be a surface of revolution
describable in closed from so that we have simple for-
mulae. However, the shape of certain small celestial
bodies cannot be approximated by a surface of re-
volution, so Russian cartographers have developed
projections for them with a triaxial ellipsoid as the
reference frame.

• The codomain should have zero Gaussian curvature
(developable surface), since we want a flat map. In
contrast, Google Earth uses a map projection between
the ellipsoid of revolution and a sphere.

• We do not want the same point of the reference frame
to appear in multiple places on the map, i.e. the
mapping should be single-valued. However, we can
find maps that show the poles as lines and maps that
show the meridian ±180° twice.

• We do not want the map to have breaks and discon-
tinuities, i.e. the map projection should be a multiple
times differentiable function. This is impossible to
satisfy everywhere based on the results of topology;
in every projection, we find a point or line, along
which continuity is not satisfied.
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VI. The basics of map projections

• We do not want the map to bend under itself, i.e.
the mapping should be injective. Especially among
perspective projections, we will see many counter-
examples, where the problematic parts are simply
not drawn at all.

The reference frame of the projection will typically be
a sphere of radius R parametrized by the latitude ϕ and
longitude λ (Sec. I.3). The other common reference frame,
the ellipsoid of revolution, is characterized by the major
semi-axis a and the first eccentricity e. Parallels Φ are
still circles of radius N (Φ)cosΦ (Sec. IV.2). However, the
meridians Λ are semi-ellipses with radius of curvature
M(Φ) (Sec. IV.1).

VI.3 Surfaces approximating the

Earth’s figure

What shape of the Earth should we consider for our cal-
culations? We have seen that planar computations are
quite simple, the derivation of the spherical formulae are
also easy to follow, but the formulae for the ellipsoid of re-
volution are capable to kill our brain cells. Imagine then
how unmanageable an irregular surface like a geoid can
be. Obviously, although the Earth is a geoid, we only take
this into account when measuring height, simplifying
for horizontal calculations. Four cases are distinguished
according to the longest extent of the area:

• We map a small area (extent < 4 km): the curvature
of the Earth causes negligible error, we can join the
group of flat-earth believers and apply the simple
formulae.

• When measuring longer distances (< 13 km), the
curvature of the Earth is assumed to be constant, and
an osculating sphere is chosen that fits the surface
well.

• For even larger areas, it is necessary to calculate on
the ellipsoid of revolution.

• If our area is very large (> 3500 km) and we are
not aiming for geodetic accuracy, but simply draw a
small-scale map, the deviation between ellipsoid and
sphere (∼ 20 km) is below the accuracy of the small-
scale map. In this case, we can also use a sphere, but
its radius, the mean Earth radius, may be significantly
different from the radius of the osculating sphere
described earlier!

VI.4 Geodetic datums

From the above requirements, it is clear that the shape
of the Earth (geoid) is approximated by an ellipsoid of
revolution even if the highest accuracy is required. This
approximation is not unique for two reasons. On the one
hand, different measurements at different locations give
different data for the Earth’s major semi-axis and its flat-
tening. On the other hand, it is not certain that the centre
of a well-fitting ellipsoid of revolution will lie exactly
at the geoid’s centre of mass, and its axis of revolution
may even differ from the Earth’s true axis of rotation. To-
gether, the dimensions and the placement of the ellipsoid
of revolution are called the geodetic datum. There can

be a difference of up to ∼ 100 m between the same geo-
graphic coordinates interpreted on different datums, so
it is always important to check which datum your data
uses!

Older ellipsoids of revolution (e.g. the Zách–Oriani of
1810) had a major semi-axis and flattening smaller than
those used today (Tab. VI.1). This is because the first
measurements were limited to Europe, and the shape of
the geoid corresponds to these dimensions here. Later
ellipsoids (e.g. the Bessel of 1841) were based on meas-
urements taken in several places averaged out and are
therefore close to the shape of the Earth as we know it
today. Current ellipsoids (e.g. WGS84) are based on satel-
lite measurements.

Table VI.1: Sizes of a few terrestrial ellipsoids

Name Year a (m) b (m) 1/f

Zách–Oriani 1810 6 376 130 6 355 561·839 310
Bessel 1841 6 377 397·155 6 356 078·963 299·152 815
Clarke 1880 6 378 249·145 6 356 514·870 293·465
Hayford 1924 6 378 388 6 356 911·946 297
Krasovskiy 1940 6 378 245 6 356 863·019 298·3
IUGG67 1967 6 378 160 6 356 774·516 298·247 167
WGS84 1984 6 378 137 6 356 752·314 298·257 224

For satellite surveys, the Earth’s centre of mass and
axis of rotation are measured easily, so the ellipsoid is
positioned so that its centre and axis of rotation coincide
with that of the Earth. The resulting datum is called a
global datum, and it fits the geoid everywhere quite well
(Fig. VI.1). An example is WGS84, which is surprisingly
based on the WGS84 ellipsoid of the same name.

Global datum

Regional datum
Region of fit

Geoid

E
ar

th
’s

ax
is

of
ro

ta
ti

on

Earth’s centre of mass

Figure VI.1: The relationship between the geoid and the datums

For ground surveys, we can only rely on data from local
measurements, so we fit the ellipsoid locally to our area
(regional datum).* The centre of the ellipsoid placed such
is offset (∼ 100 m) from the Earth’s centre of mass, and

* This does not actually mean that the difference in height (geoid
undulation) between the ellipsoid and the geoid is minimal, but that the
deviation between the local vertical direction of the geoid measured by
astronomical methods and the normal of the ellipsoid (vertical deflec-
tion) is as small as possible at the Laplace points used for the fit. This
also minimizes the discrepancy between geodetic latitudes measured
with respect to the stars and those calculated on the ellipsoid (see also
App. D).
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VI. The basics of map projections

its axis of revolution deviates (∼ 1′′) from the Earth’s axis
of rotation, but it fits the geoid well in our region. Im-
portantly, the parameters of the ellipsoid (major semi-
axis, flattening) are not changed in the process, it will
be an ellipsoid based on a previous international meas-
urement. In Hungary, we use the datum HD72, which is
based on the major semi-axis and flattening of the ellips-
oid IUGG67.*

For the conversion between the different datums, we
can take into account 7 parameters: the translations ∆x,
∆y, and ∆z in the three directions of space, the rotations
σx, σy , and σz around the three axes and a rescaling s.†

Since the angles σ are small, we use the approximations
sinσ ≈ �σ , cosσ ≈ 1, and σiσj ≈ 0 to obtain the rotational
matrix in a simpler form. Then, rescaling involves multi-
plication by a scalar, while translation involves the addi-
tion of the corresponding vector:

x
′

y′

z′

 =

∆x∆y
∆z

+ (1+ s)


1 �σz −�σy
−�σz 1 �σx�σy −�σx 1


xy
z


The upper transformation is called Helmert transform

(rarely Burša–Wolf transform). It can be seen that the
transformation requires Cartesian coordinates rather than
geographic ones. The formulae for the conversion are
given Sec. IV.3. The accuracy of the transformation is
typically around metres. It is important to note that some
GIS packages use the opposite sign convention for the
direction of rotations, so if the conversion does not work
in a program with the parameters given in the literature,
always try to flip the signs of rotations!

Sometimes, for simplicity, only the translation is con-
sidered, in which case the error is typically around five
metres. This is called a Molodenskiy transform, which
has only three parameters. Although a form of the
Molodenskiy transform can provide a direct relation-
ship between the geographic coordinates of two datums
(abridged transform), for simplicity, we will use Cartesian
coordinates: x

′

y′

z′

 =

∆x∆y
∆z

+

xy
z


Alternatively, for greater accuracy, a grid shift transform

is usually provided by GIS, which effectively adds or sub-
tracts different values from the geographic coordinates
from place to place by interpolating data from a raster
file. This results in an accuracy of decimetres, but is com-
putationally expensive, as it is slow to extract the locally
valid offsets from the raster.

* The realization of regional datums relies on marked points, the
latitude and longitude of which are recorded on a sheet of paper, so
the regional datum can slowly depart from its original position as the
tectonic plates move. Its typical rate is about one metre every 25 years.

† Due to the adjustment for measurement errors during triangula-
tion, the scale relations of regional and global datums are inconsistent,
and this is taken into account in the transform, but the measurement
accuracy of the angles is more reliable, so we take care to preserve them.
This is why we have chosen a similarity transformation.

VI.5 The radius of the Earth

We are now dealing with the sphere as a reference frame.
There are several ways to derive the radius of the Earth,
now assumed to be spherical, from the data of the ellips-
oid of revolution. In this section, the values given are the
radii of the spheres approximating the ellipsoid WGS84,
i.e. a = 6378137m, f = 1/298·257223563. The volumetric
radius, which represents a sphere having the same volume
as the ellipsoid of revolution, is the most commonly used
radius in small-scale mapping. Its value is less than one
metre greater than 6371 km. To calculate it, formulate
the volume of the sphere and that of the ellipsoid:

4R3π
3

=
4a2bπ
3

R =
3√
a2b = a

6√
1− e2

The surface of the sphere corresponding to the authalic
radius is the same as that of the ellipsoid. Its value is
6371·007 km. When calculating, recall that the surface of
the sphere was obtained in Sec. II.2, while the surface of
the ellipsoid of revolution was obtained in Sec. IV.4:

4R2π = 2a2π
(
1+
1− e2

2e
ln
1+ e
1− e

)

R =

√
a2

2

(
1+
1− e2

2e
ln
1+ e
1− e

)
Likewise, the length of the meridians remains un-

changed if a sphere of rectifying radius is chosen. This
is 6367·449 km, its calculation:

2Rπ = 2

90°U
−90°

M(Φ)dΦ

For local mapping, we use the radius of the osculating
sphere or the Gaussian radius of curvature, which varies
from place to place. Its value is the geometric mean of
the radii of curvature taken at the point:

R =
√
M(Φ)N (Φ)

It is easy to see that according to the Theorema Egre-
gium, a projection between the ellipsoid and the oscu-
lating sphere can be distortion-free in the infinitesimal
neighbourhood of latitude Φ , as here they have the same
Gaussian curvature.

VI.6 Classification of projections

Projections can be classified in several ways. Most often,
we classify them according to the shape of the graticule. We
then call conical projections those mappings in which:

• the mapped parallels are concentric circles, arcs of
circles, or parallel straight lines;

• the mapped meridians are concurrent or parallel
straight lines;

• parallels and meridians are everywhere perpendicu-
lar to each other;
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VI. The basics of map projections

• the meridians are spaced along the parallels evenly
(in proportion to their longitude).

If only one condition is not fulfilled, then we speak of
a non-conical projection.

Based on the images of the parallel circles, both con-
ical and non-conical projections are grouped further
(Fig. VI.2):

• If the images of the parallels are complete circles, an
azimuthal or a pseudoazimuthal projection is obtained.

• If they are mapped only to arcs of circles, we speak
of a (pseudo)conic projection.

• If the mapped parallels are parallel lines, we have a
(pseudo)cylindrical map.

• Some non-conical projections do not fit either of
these groups. These are the miscellaneous projections.

Parallels Conical Non-conical

Circles

Azimuthal Pseudoazimuthal

Arcs

Conic Pseudoconic

Straight

Cylindrical Pseudocylindrical

Other —

Miscellaneous

Figure VI.2: Classification according to the shape of the graticule

Projections are also grouped according to their geomet-
ric construction: a projection is perspective if it can be
generated by a central perspective projection (using light
rays from a centre placed on the common axis of revolu-
tion of a developable surface and the reference frame),
all other projections are non-perspective. All perspective
projections are also conical ones.

The projections must have some distortion due to the
Theorema Egregium. The distortions are characterized by
local distortions. These are the ratios of the corresponding
mapped and original quantities as the quantity on the
reference frame approaches zero. Let l denote the linear
scale, p the areal scale and i the angular distortion. Let ∆s,

∆S, and µ denote distances, areas, and angles, respect-
ively, on the reference frame; and ∆s′ , ∆S ′ , and µ′ denote
their corresponding mapped images. The distortions are
defined as follows:

l = lim
∆s→0

∆s′

∆s

p = lim
∆S→0

∆S ′

∆S

i =
tanµ′

tanµ

So a projection is distortion-free where all three dis-
tortions are one. On this basis, we can also group pro-
jections according to distortion characteristics: if at each
point p = 1, then the projection is equal-area or equivalent.
If i = 1 for the whole map then our mapping is conformal.
If at all points and in all directions l = 1 then we have mis-
calculated something. This would imply the absence of
distortion, which is ruled out by the Theorema Egregium.
There are projections that have equidistant lines, and even
infinitely many lines (all meridians or all parallels) can
be equidistant, but even then they cannot be true-scale
in all directions at the same time. So our third possible
category is aphylactic (neither equivalent nor conformal).

On the projections of all three categories, there may
be points or lines, along which there is absolutely no
distortion. This is called a true-scale or standard line of the
projection and if it is a parallel, we may also use the term
standard parallel.

We can also classify projections according to their as-
pect: this grouping is first defined on a sphere using the
metageographic coordinate system. We conceptualize
this as rotating the graticule so that an arbitrarily chosen
point, the metapole, behaves like the original pole. The
exact definition and formulae are given in Sec. V.3. Sub-
sequently, the projection will be plotted in terms of the
metageographic coordinates rather than the geographic
coordinates.

If the metapole coincides with one of the poles, the
aspect is normal. if the metapole is on the Equator, it is
transverse. otherwise, it is oblique. For an ellipsoid of re-
volution, we generalize this definition by considering the
aspect of the spherical projection obtained from the el-
lipsoidal formulae by substituting e = 0. Projections not of
normal aspect are classified according to the image of the
metagraticule (i.e. the network of mapped metaparallels
and metameridians) instead of the original graticule.

It is important to keep in mind that the rotation of
the graticule preserves the distortion characteristics of
the projection (e.g. conformality and equivalency), but
special properties of the graticule (e.g. equidistant me-
ridians, intersection angle between graticule lines) will
apply to the metagraticule, the original graticule will lose
these properties. This does not affect the classification
according to the shape of the graticule; if the properties
of conical projections are satisfied for the metagraticule
and the projection is called a conical projection even if the
mapped graticule would lead us to conclude the opposite.
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Lesson seven

Distortions in terms of partial derivatives

VII.1 The linear scale

Consider an infinitesimal section ∆s on the reference
frame considered as a plane due to small dimensions!
The infinitesimal geographical quadrangle enclosing the
section is approximately a rectangle. Assuming from the
differentiability that the mapped slopes of the sides are
essentially the same, as they are close to each other, so the
quadrangle is mapped to a tiny parallelogram (Fig. VII.1).

λ+∆λ

∆n

λ
ϕ

∆m

ϕ +∆ϕ

∆
s

α

(a) Originally on the reference frame

∆n
′∆

m
′ ∆

s
′

∆n′y

∆n′x

∆m′y

∆m′x

ϑ

ϑn
ϑm

(b) Mapped onto the plane

Figure VII.1: Infinitesimal geographic quadrangle and its image

Projections are described by the pair of functions
x(ϕ,λ), y(ϕ,λ). The definition of the partial derivative is
�xf (x,y) = lim∆x→0[f (x+∆x,y)− f (x,y)]/∆x. Rearranged:
f (x +∆x,y)− f (x,y) ≈ ∆x × �xf (x,y). Using this relation,
we can approximate the length of the green sections:

∆m′x ≈
�x

�ϕ
�∆ϕ

∆m′y ≈
�y

�ϕ
�∆ϕ

∆n′x ≈
�x

�λ
�∆λ

∆n′y ≈
�y

�λ
�∆λ

From the Pythagorean theorem for ∆s′ , it follows that:

∆2s′ = (∆m′x +∆n′x)2 +
(
∆m′y +∆n′y

)2
≈

(
�x

�ϕ
�∆ϕ +

�x

�λ
�∆λ)2 +

(
�y

�ϕ
�∆ϕ +

�y

�λ
�∆λ)2

=
[(
�x

�ϕ

)2
+
(
�y

�ϕ

)2](�∆ϕ)2
+ 2

[
�x

�ϕ

�x

�λ
+
�y

�ϕ

�y

�λ

]�∆ϕ�∆λ
+
[(
�x

�λ

)2
+
(
�y

�λ

)2](�∆λ)2
The factors in square brackets* will be denoted by

E,F,G respectively for brevity:

∆2s′ = E
(�∆ϕ)2

+ 2F�∆ϕ�∆λ+G
(�∆λ)2

* These quantities are called the coefficients of the Gaussian first fun-
damental form.

The sides of the rectangle on the reference frame in
the directions of parallels and meridians are ∆n and ∆m,
respectively, so:

∆2s = ∆2m+∆2n ≈
(

dm
dϕ

)2(�∆ϕ)2
+
(

dn
dλ

)2(�∆λ)2
For the angle from the meridian to the section and the

meridian (azimuth α):

tanα =
∆n
∆m
≈

dn
dλ

�∆λ
dm
dϕ

�∆ϕ
�∆λ�∆ϕ ≈

dm
dϕ
dn
dλ

tanα

The definition of the linear scale is:

l = lim
∆s→0

∆s′

∆s

And then let us fasten the seat belts!

l2 =
∆2s′

∆2s
=
E
(�∆ϕ)2

+ 2F�∆ϕ�∆λ+G
(�∆λ)2(

dm
dϕ

)2(�∆ϕ)2
+
(

dn
dλ

)2(�∆λ)2

=
E + 2F �∆λ�∆ϕ +G

(�∆λ)2(�∆ϕ)2(
dm
dϕ

)2
+
(

dn
dλ

)2 (�∆λ)2(�∆ϕ)2
=
E + 2F

dm
dϕ
dn
dλ

tanα +G

(
dm
dϕ

)2
( dn

dλ )2
tan2α

(
dm
dϕ

)2
+
(

dn
dλ

)2 ( dm
dϕ

)2
( dn

dλ )2
tan2α

=

E cos2α(
dm
dϕ

)2 + 2F tanα cos2α
dm
dϕ

dn
dλ

+G tan2α cos2α
( dn

dλ )2

cos2α + tan2α cos2α

= E
cos2α(

dm
dϕ

)2 + 2F
sinα cosα

dm
dϕ

dn
dλ

+G
sin2α(

dn
dλ

)2
We know that the small arc length on the reference

frame is equal to the product of the radius and the sub-
tended angle (in the following formulae, the ones on the
left are for a sphere, the ones on the right are for the
ellipsoid of revolution):

∆m = R�∆ϕ ∆m =M(Φ)�∆Φ
dm
dϕ

= R
dm
dΦ

=M(Φ)

∆n = Rcosϕ�∆λ ∆n =N (Φ)cosΦ�∆Λ
dn
dλ

= Rcosϕ
dn
dΛ

=N (Φ)cosΦ
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VII. Distortions in terms of partial derivatives

That is, on the sphere, expanding also the notations
E,F,G:

l2 =
[(
�x

�ϕ

)2
+
(
�y

�ϕ

)2]cos2α
R2

+
[(
�x

�λ

)2
+
(
�y

�λ

)2] sin2α
R2 cos2ϕ

+ 2
[
�x

�ϕ

�x

�λ
+
�y

�ϕ

�y

�λ

]
sinα cosα
R2 cosϕ

And on the ellipsoid of revolution:

l2 =
[(
�x

�Φ

)2
+
(
�y

�Φ

)2] cos2α
M2(Φ)

+
[(
�x

�Λ

)2
+
(
�y

�Λ

)2] sin2α
N2(Φ)cos2Φ

+ 2
[
�x

�Φ

�x

�Λ
+
�y

�Φ

�y

�Λ

]
sinα cosα

M(Φ)N (Φ)cosΦ

It can be seen that the linear scale depends (via the
partial derivatives) on both the location and the direction
α. Let us calculate the linear scales along graticule lines! If
α = 0°, we obtain the linear scale along meridians denoted
by h and if α = 90°, we obtain the linear scale along parallels
denoted by k:

h =

√(
�x
�ϕ

)2
+
(
�y
�ϕ

)2
R

h =

√(
�x
�Φ

)2
+
(
�y
�Φ

)2
M(Φ)

k =

√(
�x
�λ

)2
+
(
�y
�λ

)2
Rcosϕ

k =

√(
�x
�Λ

)2
+
(
�y
�Λ

)2
N (Φ)cosΦ

We can find equidistant projections in meridians with
the condition h = 1, while we can find equidistant projec-
tions in parallels imposing k = 1.

VII.2 Intersection angle between

graticule lines

Going back to Fig. VII.1, we can see that the angles ϑm
and ϑn can be easily derived from the corresponding right
triangles:

sinϑm =
∆m′y
∆m′

=

�y
�ϕ

�∆ϕ
∆m′

cosϑm =
∆m′x
∆m′

=
�x
�ϕ

�∆ϕ
∆m′

sinϑn =
∆n′y
∆n′

=
�y
�λ

�∆λ
∆n′

cosϑn =
∆n′x
∆n′

=
�x
�λ

�∆λ
∆n′

Let ϑ denote the intersection angle between parallels and
meridians. Then, using that according to the figure ϑ =
ϑm −ϑn:

sinϑ = sin(ϑm −ϑn) = sinϑm cosϑn − cosϑm sinϑn

=
(
�y

�ϕ

�x

�λ
− �x
�ϕ

�y

�λ

) �∆ϕ�∆λ
∆m′∆n′

cosϑ = cos(ϑm −ϑn) = cosϑm cosϑn + sinϑm sinϑn

=
(
�x

�ϕ

�x

�λ
+
�y

�ϕ

�y

�λ

) �∆ϕ�∆λ
∆m′∆n′

Just one small step and you have a useful formula:

cotϑ =
cosϑ
sinϑ

=
�x
�ϕ

�x
�λ + �y

�ϕ
�y
�λ

�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

The interesting thing about this formula, which is also
valid for the ellipsoid of revolution, is that its numerator
is the last coefficient of the formula for the linear scale
and its denominator will occur in the formula for the
areal scale. It is important to note that at all points of
rectangular projections, cotϑ = 0, which helps to find
such projections.

VII.3 The areal scale

Let us go back to Fig. VII.1, which has been repeated to
boredom. The surface area ∆S of the small geographical
quadrangle (rectangle) is the product of the sides, while
the area ∆S ′ of the tiny parallelogram is the product of
its two sides and the sine of the angle ϑ between them:

∆S = ∆m∆n

∆S ′ = ∆m′∆n′ sinϑ

Substituting the value of sinϑ into the formula above:

∆S ′ =
(
�y

�ϕ

�x

�λ
− �x
�ϕ

�y

�λ

)�∆ϕ�∆λ
The definition of the areal scale is:

p = lim
∆S→0

∆S ′

∆S

Two useful formulae can be obtained for this, depending
on which form of ∆S ′ is substituted. On the one hand:

p = lim
∆m→0
∆n→0

∆m′∆n′ sinϑ
∆m∆n

= hk sinϑ

On the other hand:*

p = lim
∆m→0
∆n→0

(
�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

)�∆ϕ�∆λ
∆m∆n

=

�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

dm
dϕ

dn
dλ

Substituting the spherical and ellipsoidal quantities:

p =

�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

R2 cosϕ
p =

�y
�Φ

�x
�Λ −

�x
�Φ

�y
�Λ

M(Φ)N (Φ)cosΦ

Since p = 1 in equal-area projections, we can find
equivalent projections simply by solving the equation
hk sinϑ = 1. In rectangular projections, sinϑ = 1, it suf-
fices to write the even simpler equation hk = 1 for such
projections.

* The bracketed term in the numerator is the determinant of the
Jacobian matrix of partial derivatives. This implies that the Jacobian
determinant of the projection is closely related to the areal scale.
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Lesson eight

Tissot’s theory of map distortion

VIII.1 Map projections as local affine

transforms

The modern theory of map projections is based on the
works of the French cartographer Tissot, written in the
late 19th century. The main results of these studies are
called Tissot’s theorem. Since these theorems were sum-
marized by later authors, there are differences in the
number of propositions, numbering and wording of the
theorems, but these formulations are equivalent to the
statements in the original French text.

Tissot’s theorem is summarized in three propositions
in this lecture note:

I. Any differentiable mapping between two smooth surfaces
can be interpreted as an ensemble of affine transform-
ations of infinitely many infinitesimal areas. For this
reason, the mapped image of an infinitesimal circle
on the reference frame is an ellipse that can be con-
structed from the original circle using stretching and
uniform scaling.

II. At any point on the reference frame of such a differen-
tiable map projection, there is at least one pair of per-
pendicular directions whose images on the map are also
perpendicular to each other. These special directions
are called the principal directions.

III. The directions of the minimal and maximal linear scales
measured at a single point always coincide with the prin-
cipal directions. The direction of the maximum linear
scale is called the first principal direction and the direc-
tion of the minimum linear scale is called the second
principal direction.

First, prove proposition II: Take a section and another
section perpendicular to it on the plane tangent to the
reference frame, and examine their image on the map
(Fig. VIII.1). Since the two right angles on the reference
frame form a straight angle and the map projection is
assumed to be differentiable (smooth), it is certain that
the directions on the map also form a straight angle (oth-
erwise the images of the straight lines would be broken
and the map projection would not be differentiable). This
shows that the image of the other section on the map
either divides the straight angle into two right angles or
into an acute and an obtuse angle. In the former case, we
have already found two principal directions of projection,
in the latter case, we need to think further.

Looking at the planar image, we see that the image
of the red right angle became smaller, while that of the
blue right angle became larger. Since the mapping is
differentiable, we can apply Bolzano’s theorem known
in mathematical analysis to the images of right angles;
that is, continuous functions on an interval [a,b] take all
possible values of the interval [f (a), f (b)]: If the image of

(a) On the reference frame (b) On the map

Figure VIII.1: The image of two perpendicular directions

one right angle is an obtuse angle and the image of the
other one is an acute angle, there must surely be a right
angle between these two right angles rotated by some
angle whose image is a right angle. This completes the
proof.

Next, we prove proposition I: Consider a rectangle of in-
finitesimal sides ∆ξ and ∆η on the reference frame (more
precisely, on its tangent plane) such that its sides lie in
the principal directions. Then the image of this rectangle
on the map will be a rectangle since we have already seen
that the principal directions are perpendicular to each
other on the map. Let us superimpose the red rectangle of
the reference frame and the corresponding mapped blue
rectangle (Fig. VIII.2).

∆ξ ′

∆η′

∆ξ

∆η ∆η

∆ζ

Figure VIII.2: The infinitesimal rectangles superimposed

The figure shows that the red rectangle can be trans-
formed into the blue rectangle first by stretching in the
vertical direction (green dashed rectangle) and then re-
scaling it to get the blue rectangle. If the factors of the
stretching and the scaling are independent of the rect-
angle dimensions and depend only on the distortions of
the map projection, then these two transformations per-
fectly describe the image of all points in the infinitely
small neighbourhood of our point.

Let a = ∆ξ ′/∆ξ denote the linear scale in one of the
principal directions and b = ∆η′/∆η the linear scale in the
other principal direction. The scale factor of between the
red and green rectangles is then:

∆ζ
∆η

=
∆ζ

∆η′
∆η′

∆η
=

∆ξ

∆ξ ′
∆η′

∆η
=
b
a

In the derivation above, we exploited the fact that the
right triangles of legs ∆ξ,∆ζ and ∆ξ ′ ,∆η′ are similar, so
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VIII. Tissot’s theory of map distortion

the ratios of the corresponding legs are the same. From
the result, we see that the scale factor is independent of
the dimensions of the rectangle because we can express it
from the linear scales.

Let us look at the scale factor between the green and
blue rectangles:

∆ξ ′

∆ξ
= a

Since this is also independent of the dimensions of the
rectangle, it is generally true that in the small neighbour-
hood of the point, the image of the original shapes can
be obtained after stretching them by b/a and scaling by a,
where a and b are the linear scales in the principal direc-
tions of the map projection. This completes the proof. A
more lengthy, algebraic proof for those interested in the
pods of map projection theory can be found in App. E.

VIII.2 The ellipse of distortion

Before proving proposition III, we must consider the im-
plications of the first two statements. If we find two
principal directions at a point on the reference frame, let
us denote the linear scales in these directions by a and
b, with the notation chosen such that a ≥ b. Let us call
the direction of a the first principal direction and the
direction of b the second principal direction. Consider a
system of coordinates ξ,η on the tangent plane of the ref-
erence frame such that the axis ξ is in the first principal
direction. Similarly, assume a coordinate system ξ ′ ,η′ on
the map in an analogous way.

Consider an infinitesimal circle on the reference frame
assumed to be of unit radius (due to the small size and our
constraint on the smooth surface, we can neglect the dif-
ference between the surface and its tangent plane). Then,
using proposition I, we obtain a shape on the mapped
plane which is shrunk by a factor of b/a in the direction
of the η axis and then enlarged by a factor of a. This is
an ellipse of semi-axis a in the direction ξ ′ and semi-axis
b in the direction η′. This ellipse is called an ellipse of
distortion or Tissot’s indicatrix (Fig. VIII.3).

1st princ. dir.

ξ

2n
d

p
ri

nc
.d

ir
.

η

µ
η = sinµ

ξ = cosµ

(a) On the reference frame

ξ ′

η′

l
µ′

a

b η′ = bη

ξ ′ = aξ

(b) On the map

Figure VIII.3: Tissot’s indicatrix

We know that the areal scale can be obtained as the
ratio of a small mapped area divided by its corresponding
area on the reference frame. Divide the area of the ellipse

of distortion by the area of the original circle to obtain a
third method for calculating the areal distortion:

p = lim
∆S→0

∆S ′

∆S
=
abπ

12π
= ab

That is, for equal-area projections ab = 1, the area of
the ellipses of distortion is independent of location.

Let us examine the angular distortion of angles with
one arm in the first principal direction:

i =
tanµ′

tanµ
=

bη
aξ
η
ξ

=
b
a

That is, in conformal projections, a = b. This means
that in the case of conformality, the ellipses of distortion
will be circles.

We can calculate the linear scale by taking the ratio
of infinitesimal mapped distances to corresponding dis-
tances on the reference frame. The small radius subtend-
ing angle µ on the reference frame from the first principal
direction is assumed to be unit. Its image is the small
semi-diameter of the distortion ellipse, whose length can
be calculated by multiplying the coordinates on the tan-
gent plane of the reference frame by a and b, taking into
account the stretching by b/a and the scaling by a:

l =

√
ξ ′2 + η′2

1
=

√
a2ξ2 + b2η2 =

√
a2 cos2µ+ b2 sin2µ

Now we can prove proposition III. Earlier we stipu-
lated that a ≥ b and since the linear scale is by definition
positive, a2 ≥ b2. Since cos2µ+ sin2µ = 1, we have some
weighted average of a2 and b2 under the square root. Its
value is maximal if a2 has weight 1 and b2 has weight 0,
and minimal if b2 has weight 1 and a2 has weight 0. It
follows that b ≤ l ≤ a and l has a maximum at µ = 0° and
a minimum at µ = 90°, which is also a principal direction
of the map projection due to proposition II. Thus, the
extrema are in the principal directions of the projection.
This completes the proof. There is a problem if a = l = b
because in this case, there are extrema in all directions.
However, in this case, the projection is conformal, any
pair of perpendicular directions will be mapped to a pair
of perpendicular directions. That is, in conformal pro-
jections, each direction is a principal direction. Tissot’s
theorem is thus fully proved.

Henceforth, a will be called maximum and b minimum
linear scale. Another important result is that we have seen
that in conformal projections, the linear scale is independ-
ent of the direction because a = b = l.

VIII.3 Calculation of extremal linear

scales

In the following, we look for practical formulae for a and
b. Let υ denote the angle on the reference frame formed
by the parallel and the first principal direction! Then the
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VIII. Tissot’s theory of map distortion

meridian will form υ + 90°. The linear scale along the
meridian and the parallel is obtained by the formula:

h =
√
a2 cos2(υ+ 90°) + b2 sin2(υ+ 90°)

k =
√
a2 cos2υ+ b2 sin2υ

That is:*

h2+k2 = a2 sin2υ+b2 cos2υ+a2 cos2υ+b2 sin2υ = a2+b2

Any formula obtained for the areal scale should give
the same value:

p = hk sinϑ = ab

From the previous two equations:

(a+ b)2 = a2 + b2 + 2ab = h2 + k2 + 2hk sinϑ

(a− b)2 = a2 + b2 − 2ab = h2 + k2 − 2hk sinϑ

A simple transformation gives:

a =
a+ b+ a− b

2
=

√
(a+ b)2 +

√
(a− b)2

2

b =
a+ b − (a− b)

2
=

√
(a+ b)2 −

√
(a− b)2

2

That is, the final result:

a =

√
h2 + k2 + 2hk sinϑ +

√
h2 + k2 − 2hk sinϑ

2

b =

√
h2 + k2 + 2hk sinϑ −

√
h2 + k2 − 2hk sinϑ

2

Let us make some observations! In projections with rect-
angular graticule (and hence in any conical projection),
the graticule lines are principal directions, so h and k are
also the extremal linear scales. In conformal projections,

* The relation obtained here is generally valid: Apollonius was the
first to show that the sum of the squares of two conjugate semi-diameters
of an ellipse (considering the ellipse as an affine image of a circle, the
images of two perpendicular radii of the original circle) is constant.

all directions, including the graticules, are principal dir-
ections, i.e. the graticule is always rectangular (ϑ = 90°).
To prove the conformality if the graticule is rectangu-
lar, it is sufficient to check h = k, since h and k can be
substituted for a and b.

VIII.4 Maximum angular deviation

Before we start, let us do some calculations with the
angle µ and its image µ′ subtended from the first principal
direction. Consider the following fraction:

sin(µ−µ′)
sin(µ+µ′)

=
sinµcosµ′ − cosµsinµ′

sinµcosµ′ + cosµsinµ′

=

sinµcosµ′

cosµsinµ′ − 1
sinµcosµ′

cosµsinµ′ + 1
=

tanµ
tanµ′ − 1
tanµ
tanµ′ + 1

=
a
b − 1
a
b + 1

=
a− b
a+ b

We have just applied our previous knowledge that for
such angles, i = tanµ′/tanµ = b/a. The equation above is
multiplied by sin(µ+µ′):

sin(µ−µ′) =
a− b
a+ b

sin(µ+µ′) ≤ a− b
a+ b

µ−µ′ ≤ arcsin
a− b
a+ b

The relation above gives an upper bound on the max-
imal change in the direction an arm of angle can undergo
during the projection. This necessarily leads to the con-
clusion that an angle will suffer the maximum possible
angular deviation if both arms change by that amount.
Then the maximum angular deviation is denoted by ω:

ω = 2arcsin
a− b
a+ b

Considering that the arc sine never gives a value greater
than 90°, ω is always less than or equal to 180°. The
maximum angular deviation can sometimes be more il-
lustrative than the angular distortion.
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Lesson nine

Map distortions in practice

IX.1 Visualizing distortions

To choose the most appropriate projection for the pur-
pose of our representation, we need to observe their dis-
tortions. We need to visualize the distortions in some way,
typically by using the concepts of diagrams and isolines
familiar from thematic cartography. The use of Tissot’s
indicatrices is obvious. The infinitely small ellipses of
distortion must be enlarged using some convention in
order to make them finite. The ellipses must be rotated
so that the semi-axes are aligned with the corresponding
principal directions of the projection. The distortions are
read as follows (Fig. IX.1):

• The linear scale is directly proportional to the semi-
diameter of the ellipse in the corresponding direc-
tion.

• The flattening of the ellipse illustrates the angular
distortion. Circular indicatrices indicate conformal
projections.

• The area of the ellipse represents the areal scale. El-
lipses of the same area everywhere on the map sug-
gest an equal-area projection.

Another option is the isoline of equal distortion (isocol).
This can only show quantities that do not depend on
direction, only on the location, so it is not possible to
visualize linear scale in this way.* The areal scale, however,
depends only on location, so the method can be applied
to it. Sometimes p is replaced by its deviation from 1 on
the maps. The angular distortion is only independent of
the direction of the second arm if the first arm is in the
first principal direction of the projection. Therefore, the
maximum angular variationω is often plotted on the map
instead.

Chebyshev’s theorem is helpful in finding the projec-
tion suitable to the area to be plotted: if one of the isocols
of a conformal projection coincides with the boundary of the
area to be plotted, then it has the lowest possible distortion
among conformal projections.† An example of Chebyshev’s
theorem is that the stereographic projection has isocols
as circles (Fig. IX.2), so it is the projection of the most
favourable distortion for circular areas.

For non-conformal projections, the theorem does not
hold, and a counterexample is easy to find: the projec-
tions of Lambert and Wiechel are both equal-area and
their isocols are circles (Fig. IX.2). Yet the Wiechel pro-
jection has a much more unfavourable distortion, so the
latter is certainly not the best equal-area projection for
representing circular areas. Nevertheless, recent research

* Except for conformal projections, as we have seen earlier that the
linear scale in these projections is independent of direction.

† To put it more precisely, the difference between the logarithms of
the minimal and maximal linear scales in the area shown is minimal.

(a) In an equal-area projection

(b) In a conformal projection

(c) In an aphylactic projection

Figure IX.1: Ellipses of distortion

suggests that the isocols of the best projections also fol-
low the boundary of the area being plotted, so in such
cases, we also tend to choose projections whose isocols
are preferably parallel to the boundary of our area.

IX.2 Distortions not predicted by

Tissot’s theory

Our choice of map projection can also be affected by dis-
tortions that are not predicted by Tissot’s theorem. For
example, maps are typically oriented to the North. How-
ever, the projected graticule does not necessarily satisfy
this at all points: the discrepancy between the vertical
direction and true north is called meridian convergence.
This is not a distortion in the classical sense, because it
only rotates parts of the map. The meridian convergence
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IX. Map distortions in practice

(a) In the stereographic projection (p − 1)

(b) In Lambert azimuthal (ω) (c) In Wiechel projection (ω)

Figure IX.2: Isocols

γ is calculated from the slope (derivative) of the tangent
of the mapped meridian, where λ is constant:

tanγ =
dx
dy

= lim
∆ϕ→0

x(ϕ +∆ϕ,λ)− x(ϕ,λ)
y(ϕ +∆ϕ,λ)− y(ϕ,λ)

=
�x

�ϕ

/
�y

�ϕ

There is no meridian convergence in cylindrical pro-
jections, and no meridian convergence is expected for
other projections in the centre of the map. This is usually
achieved by adjusting the central meridian* appropriately.
This can be thought of as substituting λ−λm for λ in the
formulae, where λm is the central meridian. Since in most
projections, there is no meridian convergence at the cent-
ral meridian (λ = 0°), λm is usually the longitude running
through the centre of our area.

It rather counts as a distortion, yet Tissot’s theory does
not predict that mapped geodetic lines are not necessarily
straight lines. The deviation from this is expressed by the

* The Prime meridian is not the same as the central meridian! The
Prime meridian is the 0° meridian from which λ is measured; while
the central meridian is the longitude of typically round number that
becomes the axis of symmetry of the mapped graticule. The longit-
ude ±180° from the central meridian, in which most projections have
discontinuities, is called the antimeridian.

flexion f , which is the number of radians the geodetic line
turns for a unit distance on the line:

f =
dα
ds

A projection that maps geodesics to straight lines can
be constructed in case of a spherical surface, but not for
an ellipsoid of revolution.

Conformal projections are locally similarity transforma-
tions according to Tissot’s theory. Yet no one would think
that, for example, Mercator’s projection (Fig. XIII.3)
would show Greenland as similar to the original shape.
The reason for the shape distortion seen here is that the
linear scales change rapidly from place to place; whereas
in the same projection, the shape of Africa looks less dis-
torted because the linear scale changes slowly here. The
resulting degree of shape distortion is indicated by the
skewness s, which measures how the length distortion
multiplies for a unit distance:

s =
1
l

dl
ds

Flexion and skewness were recently defined by two as-
trophysicists, Goldberg and Gott, to study the distortion
of planetary maps. The formulae for practical calculations
were derived by Kerkovits.

IX.3 Auxiliary spheres

Sometimes, it is easier to derive a map projection for the
ellipsoid as a double mapping: in the first step, we map the
ellipsoid onto an auxiliary sphere, then a spherical projec-
tion is applied between the sphere and the plane. These
spheres are not distortion-free, so it is important to use a
sphere that has the same distortion characteristic as the
desired projection: e.g. the authalic (equal-area) sphere
should be chosen for an equal-area double mapping.

For all auxiliary spheres, we expect parallels and me-
ridians get mapped onto parallels and meridians, respect-
ively. We further expect that mapped parallels are evenly
divided by meridians:

ϕ = f (Φ)

λ = cΛ

Calculate the linear scales of auxiliary spheres.

h = lim
∆m→0

∆m′

∆m
= lim

∆Φ→0

R�∆ϕ
M(Φ)�∆Φ =

R
M(Φ)

dϕ
dΦ

k = lim
∆n→0

∆n′

∆n
= lim

∆Λ→0

Rcosϕ�∆λ
N (Φ)cosΦ�∆Λ =

Rccosϕ
N (Φ)cosΦ

Note that all auxiliary spheres are rectangular (ϑ = 90°),
so h and k are also the a and bmaximal and minimal linear
scales. The simplest auxiliary sphere is the spherical
model of Google Earth:

ϕ =Φ

λ =Λ

It can be seen that the projection meets all our expecta-
tions. The radius of this sphere is the equatorial radius of
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IX. Map distortions in practice

the Earth (6378·137 km). The mapping is aphylactic, i.e.
h , k and hk , 1.

The authalic sphere is equal-area. We know that hk = 1.

R
M(Φ)

dϕ
dΦ

Rccosϕ
N (Φ)cosΦ

= 1

cosϕdϕ =
M(Φ)N (Φ)cosΦ

R2c
dΦU

cosϕdϕ =
a2(1− e2)
R2c

U
cosΦ

(1− e2 sin2Φ)2
dΦ

sinϕ =
a2(1− e2)
R2c

[
sinΦ

2(1− e2 sin2Φ)
+
1
4e

ln
1+ e sinΦ
1− e sinΦ

]
+κ

Recall that we have already suffered for the complicated
integral on the right-hand side in Sec. IV.4, and we could
substitute it. κ is a constant of integration, it can take
any value. We usually choose c = 1 and κ = 0. Note that
it makes sense to use this projection with the authalic
radius (Sec. VI.5) only!

Let us also develop the rectifying sphere, which is
equidistant in meridians (h = 1).

R
M(Φ)

dϕ
dΦ

= 1

dϕ =
M(Φ)
R

dΦ

ϕ =
1
R

U
M(Φ)dΦ +κ

We usually use this projection with c = 1, κ = 0, but
now we should substitute the rectifying radius for R.

Now only the calculation of the conformal sphere (h = k)
is left:

R
M(Φ)

dϕ
dΦ

=
Rccosϕ

N (Φ)cosΦ
1

cosϕ
dϕ =

cM(Φ)
N (Φ)cosΦ

dΦU
1

cosϕ
dϕ = c

U
1− e2

cosΦ(1− e2 sin2Φ)
dΦ

The left-hand side integral is no longer a Chinese
puzzle for us since Sec. III.3. The one on the right-hand
side needs a bit of reworking:U

1− e2

cosΦ(1− e2 sin2Φ)
dΦ =

=
U
1− e2 sin2Φ − e2 cos2Φ

cosΦ(1− e2 sin2Φ)
dΦ

=
U
1

cosΦ
− e2 cosΦ
1− e2 sin2Φ

dΦ =

= lntan
(
45° +

Φ
2

)
− eartanh(e sinΦ) + lnκ

The last step can be checked again by deriving back,
this time the constant of integration is written as lnκ.
Substituted back into the previous equation:

lntan
(
45° +

ϕ

2

)
= c lntan

(
45° +

Φ
2

)
− ce
2

ln
1+ e sinΦ
1− e sinΦ

+ lnκ

tan
(
45° +

ϕ

2

)
= κ tanc

(
45° +

Φ
2

)(1− e sinΦ
1+ e sinΦ

)ce/2
ϕ = 2arctan

[
κ tanc

(
45° +

Φ
2

)(1− e sinΦ
1+ e sinΦ

)ce/2]
− 90°

Φ cannot be expressed from the equation, but can be
obtained using fixed-point iteration:

Φ ′′ = 2arctg c

√√√√√ tg
(
45° + ϕ

2

)
κ

(
1−e sinΦ ′

1+e sinΦ ′
)ce/2 − 90°

First we use the approximation Φ ≈ ϕ, then we use the
formula above to obtain further and further improved
values. Usually four or five approximations are enough,
the procedure converges rapidly. Remember that the for-
mula λ = cΛ still applies! The radius of the sphere does
not affect conformality. At small scales, we can give it any
value, and we usually choose κ = 1, c = 1.

At large scales, we choose the Gaussian conformal sphere,
which declares an arbitrarily chosen parallel Φs as distor-
tion-free, and minimizes distortions in the vicinity of the
parallel (i.e. the first two derivatives of the logarithm of
the linear scale are zero at this latitude). Skipping deriv-
ation, the chosen radius is the radius of the osculating
sphere, the calculation of c and the spherical latitude ϕs
of the standard parallel is:

tanϕs =
tanΦs√

1+ (e′)2 cos2Φs
R =

√
M(Φs)N (Φs)

c =
sinΦs
sinϕs

Then, by substituting Φs and ϕs back into the mapping
formulae, we also obtain the missing optimal value for κ.
Sometimes, the spherical latitude of the standard paral-
lel is given for this projection, but the constants can be
calculated from the above formulae in this case as well.
This projection has a very low distortion: for Hungary,
the deviation of the linear scale from one is less than
1 :4000 000, the correction in azimuth due to the differ-
ence between ellipsoidal and spherical geodesics can be
ignored even for distances up to 50 km (< 0·008′′).
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Conical map projections
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Lesson ten

Perspective azimuthals

X.1 Azimuthals in general

We are now at the point where we are getting to know
specific map projections. Let us start our exploration
of azimuthal projections: Azimuthals are best discussed
in a polar coordinate system. The mapped parallels are
concentric full circles. The straight concurrent meridians
divide them equidistantly, so the polar angle is equal to
the longitude, and only the radii of the mapped parallels
can be varied. Let this radius be denoted by the strictly
increasing radius function ϱ(δ), where the colatitude δ is
the complementary angle of the latitude ϕ (δ = 90°−ϕ)!
This uniquely defines the azimuthal projection (Fig. X.1):

x = ϱ sinλ

y = −ϱcosλ

x

y

ϱλ

Figure X.1: Polar coordinates in azimuthals

These projections are called azimuthal because they
preserve the azimuths of the orthodromes starting from
the centre; and they are also called zenithal because points
at the same distance from the centre are also at the same
distance on the map. Linear scales along graticule lines:

h =

√(
�x
�ϕ

)2
+
(
�y
�ϕ

)2
R

=

√( dϱ
dϕ

)2
sin2λ+

( dϱ
dϕ

)2
cos2λ

R

=

√(
−dϱ

dδ

)2
sin2λ+

(
−dϱ

dδ

)2
cos2λ

R
=
1
R

dϱ
dδ

k =

√(
�x
�λ

)2
+
(
�y
�λ

)2
Rcosϕ

=

√
ϱ2 cos2λ+ ϱ2 sin2λ

Rsinδ
=

ϱ

Rsinδ

We have just taken advantage of the fact that:

dϱ
dϕ

=
dϱ
dδ

dδ
dϕ

=
dϱ
dδ

d(90°−ϕ)
dϕ

= −
dϱ
dδ

In general, we note that for the purpose of continuous
representation at the pole, we can expect ϱ(0) = 0. Fur-
thermore, the colatitude δ need not be measured from the
North Pole for azimuthal and conic projections, it can be
measured from the South Pole. In this case, the Southern
Hemisphere will be at the centre of the map.

X.2 Vertical perspective projection

Vertical perspective projections can be produced by us-
ing a central perspective projection. Denote the distance
between the centre of the sphere and the focal point by f R,
and the distance between the focal point and the plane
by cR. The perspective projection is tangent if the plane
touches the sphere (c = 1 + f ), secant if it intersects the
sphere, otherwise, it is extern. The ratios of the legs of the
two similar right triangles in Fig. X.2 are equal:

R(f + cosδ)
Rsinδ

=
cR
ϱ

ϱ = R
c sinδ
f + cosδ

R

P

δ

Rsinδ

f R

Focal point

cR

ϱ P ′

R
co

sδ

Figure X.2: The principle of the vertical perspective projection

Of the vertical perspective projections, the ones with
focal points outside the sphere (|f | > 1) are the most com-
mon. If the centre of projection and the plane are on
the same side of the sphere (f < −1, near-side perspective),
then the Earth is represented as it appears from above.
This is similar to the mapping found in Google Earth. If
the focal point is at the opposite side of the sphere (far-
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X. Perspective azimuthals

Figure X.3: Oblique far-side perspective projection

side perspective), it can be used to represent areas larger
than a hemisphere (Fig. X.3).

Perspective azimuthals map those spherical circles
whose plane contains the centre of projection into a
straight line. This is easy to see since the rays from the
centre of projection are in this plane. The line of intersec-
tion of the plane of the projection and that of the rays is,
of course, a straight line. The images of other spherical
circles are conic sections. This is also easy to prove be-
cause this time the rays between the circle and the focal
point now form an oblique cone, whose planar sections
are by definition conic sections.

X.3 Gnomonic projection

In the case of f = 0 (projection from the centre):

ϱ = cR tanδ

This is called the gnomonic projection (Fig. X.4) and was
created by Thales. The formula shows that the Equator
can no longer be represented by it. The distortions for the
tangent (c = 1) placement are:

h =
1
R

dϱ
dδ

=
1

cos2 δ

k =
ϱ

Rsinδ
=

tanδ
sinδ

=
1

cosδ
At the pole h = k = 1, so it is true-scale, while at the

Equator, the distortions are infinitely large. In between,
the distortions increase rapidly, with a significant increase
in areal (hk > 1) and angular distortion (h , k). Its distor-
tions are very unfavourable, but it is rarely used because
this projection maps spherical geodesic lines to straight
lines (since the centre of projection is now in their plane).
This may be of interest for communication (e.g. position-
ing radio towers) or navigation purposes.

The projection is also easily recognizable in the trans-
verse and oblique aspects because its meridians are par-
allel or concurrent lines, and mapped parallels are conic
sections.

Figure X.4: Gnomonic projection

X.4 Orthographic projection

Let us consider the case f →∞, c→∞ by limit calculus
(in this case the centre of projection is infinitely far away,
the rays are parallel):

ϱ = Rsinδ

This is the orthographic projection, which shows the
Earth as if viewed from a great distance (Fig. X.5). It was
created by Apollonius. Since distant celestial bodies are
seen in this way when viewed through a telescope, it is
a popular choice for planetary maps, especially in the
transverse aspect. No area larger than a hemisphere can
be represented. The distortions:

h =
1
R

dϱ
dδ

= cosδ

k =
ϱ

Rsinδ
=

sinδ
sinδ

= 1

k = 1, so the projection is equidistant in parallels. There
is no distortion at the pole (h = 1), linear scale along
meridians is unacceptable at the Equator (h = 0). The
distortions increase rapidly away from the pole causing
areal reduction (hk < 1) and angular distortion (h , k).
In rotated aspects, the mapped meridians are arcs of el-
lipses and the parallels are displayed as arcs of ellipses or
parallel lines (the latter in transverse aspect).

X.5 Stereographic projection

The most important perspective azimuthal projection is
f = 1, i.e. when the centre of projection is at the opposite
pole. This is the stereographic projection (Fig. X.6):

ϱ = Rc
sinδ
1+ cosδ

= Rc
2sin δ

2 cos δ2
sin2 δ2+cos2 δ2+cos2 δ2−sin2 δ2

= Rc tan
δ
2

37



X. Perspective azimuthals

(a) Normal (b) Transverse

Figure X.5: Orthographic projection

(a) Normal (b) Oblique (for Asia)

Figure X.6: Stereographic projection
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X. Perspective azimuthals

To understand the properties of distortion, we calculate
the linear scales along graticule lines:

h =
1
R

dϱ
dδ

=
1
R

Rc

2cos2 δ2
=

c

2cos2 δ2

k =
ϱ

Rsinδ
=

Rc tan δ
2

2Rsin δ
2 cos δ2

=
c

2cos2 δ2

This will make the heart of any student of map projec-
tions beat faster! h = k, i.e. the stereographic projection
is conformal! In addition, the every spherical circle in
this projection is either a circle or a straight line, i.e. the
projection preserves circles. The procedure of the proof
can be followed in Fig. X.7:

Plane of the circle

Centre of projection

Plane of projection

Figure X.7: The stereographic projection preserves circles

Take an arbitrary circle on the surface of the sphere.
The figure shows the vertical section of the sphere that
is perpendicular to the plane of the circle. We have seen
earlier that if the plane of the circle contains the focal
point then its mapped image is straight in all perspective
azimuthal projections; we will now consider only circles
in a general position. Each point of the circle is connected
to the focal point by a ray, forming an oblique cone (blue).
The plane of projection cuts out a conic section. The red
and green angles are the same because they are inscribed
angles of the same thick blue chord. The green and blue
angles are equal because of symmetry, while the blue
and black are corresponding angles, so all four angles are
equal.

The blue oblique cone is symmetrical to the plane
marked by the blue dashed line because it is the angle
bisector of the aperture. Since the vertical positioning
of the plane of projection does not affect the preserva-
tion of circles (since it is only a uniform scaling), it can
be positioned without loss of generality to contain the
intersection line of the plane of the original circle and
the symmetry plane of the oblique cone (which is per-
pendicular to the plane of the figure). Since the red and
black angles are the same, the plane of the circle and the
plane of the projection are mirror images of each other in

the blue dashed plane. So the mapped image marked in
red on the plane of projection can also be produced as a
mirror image of the original circle, so it is also a circle, of
course. This completes the proof.

This projection was known to the ancient Egyptians
and was used in star maps. Today it is used, among other
things, on meteorological maps where measurement of
angles is important. The isocols of the projection are
circles centred on the pole, i.e. it is the least distorted con-
formal projection for circular regions according to Cheby-

shev’s theorem. Therefore, it is often found in transverse
(e.g. conformal maps of hemispheres) and oblique aspects
for nearly circular areas. Because of its advantageous
properties, this mapping is widely used despite the fact
that the South Pole is mapped to infinity.

The c = 2 (tangent) version is true-scale at the North
Pole (h = k = 1), and distortions increase rapidly away
from it. Let the plane intersect the sphere in the secant
parallel δs! Then:

c = 1+ cosδs

= sin2
δs
2

+ cos2
δs
2

+ cos2
δs
2
− sin2

δs
2

= 2cos2
δs
2

Substituting back into the formula for h and k and look-
ing at δ = δs, we find no distortion (h = k = 1), i.e. the
secant parallel of the secant stereographic projection is
true-scale.* Note that c is just a scaling factor in the pro-
jection, so the secant stereographic projection can always
be obtained by reducing the corresponding tangent pro-
jection.

Derivation of the oblique tangent stereographic projec-
tion (c = 2):

ϱ = 2R
sinδ′

1+ cosδ′
= 2R

cosϕ′

1+ sinϕ′

x = ϱ sinλ′ = 2R
cosϕ′ sinλ′

1+ sinϕ′

= −2R
sin(λ−λ0)cosϕ

1+ sinϕ sinϕ0 + cosϕ cosϕ0 cos(λ−λ0)

y = −ϱcosλ′ = −2R
cosϕ′ cosλ′

1+ sinϕ′

= −2R
sinϕ cosϕ0 − cosϕ sinϕ0 cos(λ−λ0)
1+ sinϕ sinϕ0 + cosϕ cosϕ0 cos(λ−λ0)

The derivation of the inverse projection formulae is
given in App. H.

The graticule of an oblique stereographic projection
is easily identified by its conformality and preservation
of circles: the mapped graticule lines in each aspect are
complete circles or straight lines, which always intersect
at right angles.

* Although, unfortunately, the literature on map projections some-
times states uninformedly the opposite, perspective projections are
usually not true-scale in the secant parallel, this is just a special prop-
erty of the stereographic projection!
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Lesson eleven

Non-perspective azimuthals

XI.1 Azimuthal equidistant

Let us develop a map projection equidistant in meridians
(h = 1)!

1
R

dϱ
dδ

= 1U
dϱ = R

U
dδ

ϱ = R�δ+ d

The constant of integration d = 0 because at the pole ϱ =
0. This is the azimuthal equidistant projection (Fig. XI.1).
Despite it is also named after Postel, this projection was
not invented by him: ancient Egyptians had already used
it for star maps. The linear scale along parallels:

k =
ϱ

Rsinδ
=

�δ
sinδ

At the North Pole (δ = 0), k is obtained by L’Hôpital’s
rule:

lim
δ→0

k = lim
δ→0

�δ
sinδ

= lim
δ→0

1
cosδ

= 1

At the North Pole, the projection is distortion-free (h =
k = 1), at the South Pole the denominator of k is zero, the
distortion is thus infinitely large, and distortions increase
gradually between the two.

The isocols are circles, since k is a function of δ only,
while h is constant. Although an azimuthal projection
with a more favourable distortion is known, its formulae
are very complicated, and it does not deviate spectacu-
larly from this projection in areas smaller than a hemi-
sphere. Therefore, if neither conformality nor equival-
ency is required, this mapping is recommended as a rule
of thumb for nearly circular areas.

In the oblique aspect, the metapole of the projection
will be undistorted and the metameridians radiating from
it will be azimuthal and equidistant. This is advantageous,
for example, for applications in communication. It is also
advantageous that the concentric circles centred on the
metapole are metaparallels, which map to equidistant
concentric circles. For example, if one wants to represent
the areas that North Korea’s missile of a given range can
hit, one simply needs to use this projection in the correct
aspect, since in this way circles centred on North Korea
are mapped to circles of true radii. This latter feature is
also advantageous when, for example, flights departing
from a particular airport are to be shown.

The eastern and western hemispheres are also circu-
lar areas, and the transverse aspect of this projection is
used to represent them side by side, especially in atlases.

(a) Normal

(b) Oblique (centred on North Korea)

Figure XI.1: Azimuthal equidistant projection
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XI. Non-perspective azimuthals

Derivation using the transverse formulae at the end of
Sec. V.3:

ϱ = R�δ′ = Rarccoscosδ′ = Rarccossinϕ′

= Rarccos(cosϕ cosλ)

x = ϱ sinλ′ = Rarccos(cosϕ cosλ)
sinλcosϕ√
1− cos2ϕ cos2λ

y = −ϱcosλ′ = Rarccos(cosϕ cosλ)
sinϕ√

1− cos2ϕ cos2λ

The graticule of the transverse and oblique azimuthal
equidistant is difficult to recognize but if the graticule
of a regional map is formed by complex lines, parallels
intersect the central meridian at equal intervals, and the
distortions are small in the centre of the map and larger
at the edges then one can suspect it. In the transverse
aspect, the spacing of meridians is also uniform along the
Equator.

XI.2 Lambert azimuthal equal-area

Let us also make an equal-area variant (hk = 1)! Let the
constant of integration be R2 + d/2!

1
R

dϱ
dδ

ϱ

Rsinδ
= 1U

ϱdϱ = R2
U

sinδdδ

ϱ2

2
= −R2 cosδ+R2 +

d
2

= −R2
(
cos2

δ
2
− sin2

δ
2
− 1

)
+
d
2

ϱ =

√
−2R2

(
1− sin2

δ
2
− sin2

δ
2
− 1

)
+ d = 2Rsin

δ
2

In the last step, we took advantage of the fact that
at the pole ϱ = 0, which can only be the case if d = 0.
The result is the Lambert azimuthal equal-area projection,
known since 1772* (Fig. XI.2).

Linear scales along graticule lines:

h =
1
R

dϱ
dδ

= cos
δ
2

k =
ϱ

Rsinδ
=

2sin δ
2

2sin δ
2 cos δ2

=
1

cos δ2

At the North Pole, h = k = 1, i.e. the projection is distor-
tion-free. At the South Pole the distortions are infinitely
large, since h = 0 and k→∞. The isocols follow parallels
because h and k are independent of the longitude. There-
fore, the projection can be recommended for equal-area
representations of nearly circular areas. The official maps
of the European Union are drawn in an oblique Lambert

azimuthal equal-area, centred on 52°N, 10°E.

* The Swiss mathematician Lambert was primarily concerned with
physical and mathematical problems, with only a marginal interest in
the theory of map projections. He wrote only one article on the subject
but revolutionized the field. Five of his seven new projections (equal-
area azimuthal, conic, and cylindrical; conformal conic and pseudopoly-
conic; transverse conformal and equal-area cylindrical) are still among
the most widely used ones. He was the first to seek conformal and equal-
area mappings by solving the differential equations h = k and hk = 1,
which are also used in this note.

This projection is also used to represent the eastern and
western hemispheres in transverse aspect. Derivation:

ϱ = 2Rsin
δ′

2

= R
√
2

√
sin2

δ′

2
+ cos2

δ′

2
− cos2

δ′

2
+ sin2

δ′

2

= R
√
2
√
1− cosδ′ = R

√
2− 2sinϕ′

= R
√
2− 2cosϕ cosλ

x = ϱ sinλ′ = R
√
2− 2cosϕ cosλ

sinλcosϕ√
1− cos2ϕ cos2λ

= R

√
2(1− cosϕ cosλ) sinλcosϕ√

(1− cosϕ cosλ)(1+ cosϕ cosλ)

= R
√
2sinλcosϕ√
1+ cosϕ cosλ

y = −ϱcosλ′ = R
√
2− 2cosϕ cosλ

sinϕ√
1− cos2ϕ cos2λ

= R
√
2sinϕ√

1+ cosϕ cosλ

This projection is even more difficult to recognize from
its graticule in rotated aspects. The best clue is that there
is a significant angular distortion at the edges of the map,
and the spacing of parallels on the central meridian be-
comes slightly denser towards the edge of the map.

XI.3 Ginzburg’s scheme

Ginzburg noticed that the radius functions of azimuthals
used frequently follow a single pattern:

ϱ = dRsin
δ
d

or ϱ = dR tan
δ
d

The orthographic and equal-area mappings fit the
series of sines, with d = 1 for the former and d = 2 for
the latter. The tangent gnomonic and stereographic pro-
jections are included in the series of tangents where d
is 1 and 2, respectively. At first glance, the azimuthal
equidistant seems to be out of the pattern, but in fact it
fits both series. We can prove its fit into the formula with
sine by L’Hôpital’s rule:

lim
d→∞

Rd sin
δ
d

= R lim
d→∞

sin δ
d
1
d

= R lim
d→∞

− �δ
d2

cos δd
− 1
d2

= R�δ
The limit of the formula with tangent can be computed

similarly and also results in R�δ. That is, this projection
emerges from both formulae if d is chosen to be infinitely
large.

Ginzburg was primarily concerned with the series with
sine and in 1957 he proposed the use of variant d = 3:

ϱ = 3Rsin
δ
3

This is Ginzburg’s azimuthal (Fig. XI.3), which has
very small distortions (even more favourable than the
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XI. Non-perspective azimuthals

(a) Normal (b) Oblique (for depicting the EU)

Figure XI.2: Lambert azimuthal equal-area projection

Figure XI.3: Ginzburg’s azimuthal projection

azimuthal equidistant in terms of finite length distor-
tions), it is aphylactic, but has a very low areal distor-
tion. Ginzburg also recommended version d = 1·5, which
resembles the spherical shape of the Earth.

XI.4 Ellipsoidal azimuthals

The linear scales along graticule lines of azimuthals based
on an ellipsoid are as follows:

h = − 1
M(Φ)

dϱ
dΦ

k =
ϱ

N (Φ)cosΦ

The azimuthal equidistant is obtained from the solution
of the equation h = 1:

ϱ =

ΦU
90°

M(Φ)dΦ

For the azimuthal equal-area, we have to solve the equa-
tion hk = 1 and the constant of integration can be ex-
pressed from the requirement of ϱ = 0 at the pole:

ϱ = a
√
1− e2

( 1
1− e2

+
1
2e

ln
1+ e
1− e

− sinΦ
1− e2 sin2Φ

− 1
2e

ln
1+ e sinΦ
1− e sinΦ

)1/2
For an azimuthal conformal mapping, the constant of

integration d in the function obtained by solving the equa-
tion h = k is arbitrary:

ϱ = d tan
(
45°− Φ

2

)(1+ e sinΦ
1− e sinΦ

)e/2
If linear scale c is prescribed at the pole, then:

d =
2ca
√
1− e2

(1+ e
1− e

)e/2
This projection is applied by NATO to the polar regions

as UPS (Universal Polar Stereographic) with c = 0·994
chosen on the reference frame WGS84. To avoid neg-
ative coordinates, a false easting and a false northing
of 2000 km must be added to both coordinates. Please
note that, unlike the sphere, the ellipsoidal azimuthal
conformal projection is not perspective, so the name ste-
reographic is misleading!* The UPS projection is used
up to latitude 84° in the Northern Hemisphere and latit-
ude 80° in the Southern Hemisphere instead of the UTM
zones.

* Remember that the term secant can only be applied to perspective
projections, so even though the UPS contains a scaling and therefore a
true-scale parallel, it is not a secant projection (despite what much of
the literature claims), but rather, correctly speaking, a reduced one!
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XI. Non-perspective azimuthals

Amersfoort (Bessel)

Φ,Λ

Projection
to sphere Conformal sphere

ϕ,λ

Rotation Metacoordinates

ϕ′ ,λ′

Stereographic
projection RD (new)

x,y

Figure XI.4: Amersfoort projection in the Netherlands

For the reference frame of an ellipsoid of revolution,
the metacoordinate system is not defined, so there are
two methods to obtain an oblique projection: the first is
called double mapping, in which case we first project onto
an auxiliary sphere, rotate the graticule on the sphere,
and finally apply the map projection in the spherical
form. The other option is to arbitrarily select some dis-
tortion characteristics of the spherical map projection
so that these conditions, when applied to the ellipsoid,
uniquely define the formulae of the projection. Thus, we
obtain direct ellipsoid-to-plane formulae. Below, we will
look at both methods for determining oblique ellipsoidal
azimuthal projections.

The Amersfoort projection (Fig. XI.4) on Dutch topo-
graphic maps uses method of double mapping. The refer-
ence frame is the Amersfoort Datum based on the Bessel

ellipsoid. The auxiliary sphere chosen is the Gaussian
conformal sphere (Sec. IX.3), the true-scale parallel is the
latitude of the fort in the town Amersfoort. The oblique
stereographic projection with its metapole on Amersfoort
is then applied. Finally, the coordinate axes are shifted so
that there are no negative coordinates and the vertical co-
ordinate is always greater than the horizontal. Since only
conformal mappings were used, the result is conformal.

The Amersfoort projection is significant from a Hun-
garian point of view because it is very similar to our old
stereographic projection. The only difference in principle
is that the true-scale parallel of the auxiliary sphere does

not pass through the origin of the projection in the old
Budapest and Marosvásárhely stereographic systems. If
your GIS does not support the Hungarian stereographic
projection, feel free to use the Amersfoort projection in-
stead, reparameterized to the origin Gellérthegy. The er-
ror of the transformation will then be around centimetres,
which is sufficient for most practical applications. You
may read more about old Hungarian systems in App. F.

The other method is used by the Roussilhe projection.
We know that in the spherical tangent stereographic pro-
jection, points of the central meridian are mapped to
y = 2R tan(s/2R), where s is the distance from the meta-
pole. We generalize this to the ellipsoid of revolution
by interpreting the distance s along the meridian on the
ellipsoid, while substituting the radius of the osculating
sphere (

√
M(Φ0)N (Φ0)) at the origin of the projection for

the radius R. The resulting intervals of intersections along
the central meridian and conformality together clearly
define the projection. Since the projection requires tri-
gonometric functions and elliptic integrals defined over
complex numbers, it is approximated in practice by sev-
eral series.

Roussilhe projection is found today, for example, in
Romania called Stereo70 centred near Bras, ov, translated
and reduced. A similar projection was used until recently
by the Poles, dividing the country into five separately
mapped zones, four of which were represented in this
mapping.
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Lesson twelve

Perspective & equal-area cylindricals

XII.1 General formulae

In cylindrical projections, parallels and meridians appear
as parallel straight lines perpendicular to each other. The
vertical coordinate, therefore, depends only on the latit-
ude, which is a strictly increasing and often odd function
to have symmetry. The axis x usually coincides with the
mapped Equator. The condition of equal spacing implies
that the horizontal coordinate is in direct proportion to
the longitude (Fig. XII.1). Let the coefficient of propor-
tionality be cR!

x = cR�λ
y = f (ϕ)

x

y

cR�λ P

f (ϕ)

Figure XII.1: Coordinates in cylindrical projections

Let us write down the linear scales along the graticule:

h =

√(
�x
�ϕ

)2
+
(
�y
�ϕ

)2
R

=

√
02 +

( dy
dϕ

)2
R

=
1
R

dy
dϕ

k =

√(
�x
�λ

)2
+
(
�y
�λ

)2
Rcosϕ

=

√
(cR)2 + 02

Rcosϕ
=

c
cosϕ

Examining the formula for k, we can see that latitude
±ϕs is equidistant if c = cosϕs.

XII.2 Central cylindrical projection

To derive the perspective cylindrical (or central cylindrical)
projection, see Fig. XII.2. The circumference of the base
of the cylinder is equal to the change in the coordinate
x between the longitudes ±180, i.e. cR2π = 2Rπcosϕs.

R
R

ϕ

Rcosϕ
P

cR

cR

cf R

Focal point

f R

P ′

y

R
si

n
ϕ

Figure XII.2: The principle of the central cylindrical projection

From this, the radius of the cylinder is cR = Rcosϕs, so
±ϕs is just the two secant parallels of the cylinder.

Let the distance of the focal point from the centre be
f R! Then the ratio of the legs of the similar right triangles
with green hypotenuse (illustrating the mapping of the
Equator) is the same, so the vertical leg of the smaller
triangle is necessarily cf R. From the ratio of the legs of
similar right triangles with red hypotenuse:

y + cf R
cR

=
R(f + sinϕ)
Rcosϕ

y = cR
(
f + sinϕ

cosϕ
− f

)
The distortions of perspective cylindricals are highly

unfavourable (Fig. XII.3). The projection is aphylactic
(h , k and hk , 1). Perspective cylindricals are found
almost exclusively in Russian atlases.

XII.3 Quasi-perspective cylindricals

Among cylindrical and conic projections, we can also con-
sider mappings as perspective in a broad sense in which
each meridian is projected from a separate focal point.
The centre of projection is in a line perpendicular to the
generatrix of the developable surface corresponding to the
meridian currently being mapped and passing through
the centre of the reference frame, and changes position
in a rotationally symmetrical manner with the meridians
during the mapping process. These are the quasi-perspect-
ive projections. In this course, we will explore two quasi-
perspective mappings (Fig. XII.4).

In the first case, let the centre of projection be at the
equatorial point opposite to the meridian, as in the ste-
reographic projection. The red inscribed angle shown in
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XII. Perspective & equal-area cylindricals

Figure XII.3: Central cylindrical projection
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R
ϕϕ/2
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y

(a) Gall and Braun projections

R
ϕ R

si
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y

(b) Lambert equal-area cylindrical

Figure XII.4: Major quasi-perspective cylindricals

the figure is half of the blue central angle. The tangent of
the inscribed angle:

tan
ϕ

2
=

y

R+ cR

y = R(1+ c) tan
ϕ

2

In cylindrical projections, the linear scale along paral-
lels is k = c/cosϕ. The linear scale along meridians is:

h =
1
R

dy
dϕ

=
1+ c

2cos2 ϕ2

=
1+ c

sin2 ϕ2 + cos2 ϕ2 + cos2 ϕ2 − sin2 ϕ2
=
1+ c
1+ cosϕ

That is, unlike the stereographic projection, the map-
ping is aphylactic (h , k and hk , 1), but a property that
is reminiscent of the stereographic projection is that the
secant parallels are exceptionally true-scale (if ϕ = ϕs and
c = cosϕs, then h = k = 1).

The projection was first derived by the Scottish carto-
grapher Gall in 1855 with the secant parallel ϕs = ±45°,
so the variant c =

√
2/2 is named after him. The tangent

(c = 1) version was independently created by Braun in
1867.

(a) Normal

(b) Oblique (for the former USSR) following Solovyov

Figure XII.5: Gall projection

Although it gives a rather pleasing representation, it
is extremely rare to come across it. Its use could be con-
sidered, for example, in time-zone maps where no special
distortion conditions are needed, but meridian conver-
gence is to be eliminated.

As is the case with perspective projections in general,
such mappings are primarily found in Russian atlases,
sometimes with ϕs = ±30° for world maps. Quasi-per-
spective projections were also used in oblique aspect to
represent the Soviet Union (Fig. XII.5).

Our next quasi-perspective projection is obtained by
placing the centre of projection infinitely far away, as in
the case of the orthographic projection. Then the rays will
be parallel. Let the cylinder be tangential, i.e., of radius
R (c = 1)! As shown in Fig. XII.4:

y = Rsinϕ

Distortions of the projection:

h =
1
R

dy
dϕ

= cosϕ

k =
c

cosϕ
=
1

cosϕ
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XII. Perspective & equal-area cylindricals

Oops! hk = 1, so we have an equal-area projection. This
is the Lambert equal-area cylindrical projection (1772).
Is this the only equal-area cylindrical, or are there others
among the non-perspective projections?

XII.4 Equal-area cylindricals

To answer our question, we solve the equation hk = 1:

1
R

dy
dϕ

c
cosϕ

= 1U
dy =

R
c

U
cosϕdϕ

y =
R
c

sinϕ + d

The constant of integration d is just a translation, so
it can be ignored, and c is the cosine of the equidistant
parallel. If it is 0° (c = 1), then we get the Lambert equal-
area cylindrical, but otherwise, we get additional non-
perspective projections as a solution. The distortions:

h =
1
R

dy
dϕ

=
cosϕ
c

k =
c

cosϕ

Apart from the unsurprising equivalency, we can see
that the parallel ±ϕs is true-scale, because here h = k = 1.
Such parallels are called standard parallels of the projec-
tion. At the pole, h is zero, while k is infinitely large, so the
angular distortions are infinite. In 1910, Behrmann pro-
posed ϕs = ±30° (c =

√
3/2). He found its average angular

distortion over the whole Earth to be the most favourable
among possible equal-area cylindricals (Fig. XII.6).

In 1967, the German historian Peters proposed the
variant ϕs = ±45° (c =

√
2/2), known as the Gall–Peters

projection. It is still used relatively often recently, al-
though its angular distortions are disturbingly large.*

Numerous other equal-area cylindricals are known un-
der various names, differing only in the choice of standard
parallels. The creators named these projections, of course,
after who else but themselves. The graticule of equal-
area cylindricals can be recognized by denser spacing of
parallels near the edge.

* The Gall–Peters projection is a typical example of a recurring
phenomenon, where laymen who do not know map projections reinvent
the wheel. In 20th century American cartography, it was common
for world maps (whether school atlases or wall maps) to be presented
in the Mercator projection described in the next lesson. This is an
inappropriate choice of projection because at high latitudes there is
considerable areal distortion, while the conformal property is rarely
advantageous for a map intended for indoor use. This does not mean that
this projection is bad in itself but rather that we can make good use of
its conformality on a medium to large-scale map of the (meta)equatorial
region intended for field use (e.g. a hiking map).

However, Peters made a political issue out of it. He claimed that
the imperialist superpower states were deliberately producing distorted
maps that made developed countries look larger than the more miserable
regions of Africa and South America. Peters claimed that the maps
were lying and that only his depiction of the Earth correctly represented
it. His demagogic lobbying was successful and despite fierce protests
from professionals, he succeeded in getting official maps of various UN
agencies to be edited in his projection.

From a professional point of view, Peters’s claims are, to put it mildly,
debatable. His assumption that only an equal-area mapping can cor-
rectly represent the Earth is so-so, but that his projection was the first
equivalent projection in the world is ridiculous. He was not even the
first to invent the mapping he promoted, but the Scottish cartographer
Gall did it as early as 1855. And the angular distortions are small along
the 45° latitude of developed regions, whereas he flattens the countries
around the Equator like a pancake so that the distortions are greatest
precisely where Peters claims to favour.

Unfortunately, the tabloid media is still picking up on this topic,
and you can nowadays also find articles like ‘Maps lie to us’. As a
result, there was an article a few years ago that Boston schools should
be required to teach using Gall–Peters maps in schools because it is
fair to the former colonies.

(a) Lambert equal-area cylindrical

(b) Behrmann projection (c) Gall–Peters projection

Figure XII.6: Equal-area cylindricals
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Lesson thirteen

Other cylindrical projections

XIII.1 Equidistant cylindricals

Develop a cylindrical projection with equidistant meridi-
ans (h = 1)!

1
R

dy
dϕ

= 1U
dy = R

U
dϕ

y = R�ϕ + d

The constant of integration d results only in a transla-
tion again, so we ignore it. Due to the equidistant meridi-
ans, we have h = 1, while in all cylindrical projections,
k = c/cosϕ (since x = cR�λ). Knowing that c = cosϕs, it is
easy to see that latitude ±ϕs is true-scale, i.e., a standard
parallel (h = k = 1). At the pole, k is infinitely large, less
than one between standard parallels, and increases away
from them.

The projection of the choice c = 1 (true-scale Equator)
is called the Plate Carrée projection (Fig. XIII.1) due to
the shape of its graticule and was possibly created by
Eratosthenes. Most GIS software displays data in this
projection if no projection is specified. Note, however,
that if you do not specify a map projection, the software
interprets the coordinates in degrees, whereas if you ex-
plicitly set the Plate Carrée projection, everything is ex-
pressed in metres.

By choosing c appropriately, other standard parallels
can be selected for the equidistant cylindricals (equirectan-
gular projection). This form of the projection was first used
by Marinos, who chose the true-scale latitude through
the island of Rhodes.

Since k is symmetrical about the Equator in all cyl-
indrical map projections, and h also has this symmetry
in most of the mappings we have learned so far, we can
conclude that the isocols of cylindrical projections are usu-
ally also symmetrical about the Equator. Hence, it follows
that this family of projections should be applied to long
regions that are symmetrical about the Equator. If the
map’s theme requires neither equivalency nor conformal-
ity, then it is worth using this projection because Györffy

has shown that there is no lower distortion cylindrical
mapping to represent a spherical belt that is symmetrical
about the Equator than an equidistant one. Although the
choice of a cylindrical projection to represent the entire
Earth is acceptable only in rare cases, Frančula recog-
nized that in this case, the standard parallel should be
chosen approximately at latitude ±42° to minimize dis-
tortion.

(a) Plate Carrée projection

(b) Equirectangular projection (ϕs = ±42°)

Figure XIII.1: Equidistant cylindricals

In transverse aspect:

x = cR�λ′ = cRarctan
sinλ′

cosλ′
= cRarctan(−sinλcotϕ)

y = R�ϕ′ = Rarcsin(cosϕ sinλ)

In this aspect, and with c = 1, we know this map-
ping as the Cassini projection (Fig. XIII.2), described by
the famous French surveyor in 1745. Its distortions are
favourable in the surroundings of the metaequator (a
bimeridian), therefore the spherical lunes to be mounted
on a globe model were made in this projection.

XIII.2 Mercator projection

For the conformal version (h = k), the antiderivative of
1/cosϕ was obtained from Sec. III.3:

1
R

dy
dϕ

=
c

cosϕU
dy = cR

U
1

cosϕ
dϕ

y = cR lntan
(
45° +

ϕ

2

)
+ d
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XIII. Other cylindrical projections

Figure XIII.2: Cassini projection for the Americas

This is the Mercator projection (Fig. XIII.3), originally
created by the Dutch cartographer Kremer in 1569.* The
poles are mapped to infinity. The projection is recogniz-
able by arallels spaced at increasingly greater distances as
further away from the Equator. Its significance lies in the
fact that it maps the loxodromes into straight lines. This
is why it used to be very important in navigation: since it
is also conformal, the azimuth of any loxodrome between
two points can be read directly from it.

The fact that loxodromes are straight is easy to see.
The special loxodromes of azimuth α = 0° are meridians,
which are always straight in cylindrical projections. Other
loxodromes intersect all meridians at an angle of α be-
cause of conformality. A line that intersects meridians
that appear as parallel straight lines at a constant angle
can only be straight. This completes the proof.

Let us examine the distortions of the projection.

h = k =
c

cosϕ

The constant c makes the map smaller or larger. For
c = 1, the Equator is true-scale. The downscaled version
(c < 1) may increase the size of areas with favourable dis-
tortion since it produces two distortion-free parallels, re-
duction of size between them and enlargement outwards,
but the deviation of linear scale from unity is smaller than
for c = 1. Downscaled conformal† projections (minimum

* It can be suspected that this projection has a much older origin,
but its construction was forgotten during the Middle Ages. From the
beginning, portolan charts were copied from base maps drawn in a
strikingly similar map projection. Furthermore, distances between the
latitudes on Etzlaub’s compass of 1511 follow the Mercator projection
almost exactly.

† While conformal projections remain conformal after downscaling,
the same is not true for equal-area and equidistant mappings, so the
term reduced is meaningful only for conformal projections.

Figure XIII.3: Mercator projection

of linear scale is between 0 and 1) are called reduced pro-
jections.‡ This projection should also be applied to long
regions along the Equator based on Chebyshev’s theorem
since its isocols are parallel to the Equator.

A different form of the projection should be used to
express it after the rotation of the graticule:

y = cR lntan
(
45° +

ϕ′

2

)
= cR ln

√√√√√√√√ 2sin2
(
45° + ϕ′

2

)
2cos2

(
45° + ϕ′

2

)
= cR
2 ln

sin2
(
45°+ϕ′

2

)
+cos2

(
45°+ϕ′

2

)
+sin2

(
45°+ϕ′

2

)
−cos2

(
45°+ϕ′

2

)
cos2

(
45°+ϕ′

2

)
+sin2

(
45°+ϕ′

2

)
+cos2

(
45°+ϕ′

2

)
−sin2

(
45°+ϕ′

2

)
=
cR
2

ln
1− cos(90° +ϕ′)
1+ cos(90° +ϕ′)

=
cR
2

ln
1+ sinϕ′

1− sinϕ′

This is advantageous because we already have a for-
mula for sinϕ′ and can substitute it without modification.
We also use the conversion �λ′ = arctantanλ′. Instead of
the latitude of the metapole ϕ0, we will substitute the
latitude of the intersection between the metaequator and
the prime metameridian ϕc (see Sec. V.3).

x = cRarctantanλ′ = cRarctan
sinλ

tanϕ sinϕc − cosλcosϕc

y =
cR
2

ln
1+ sinϕ cosϕc − cosϕ sinϕc cosλ
1− sinϕ cosϕc + cosϕ sinϕc cosλ

‡ Unfortunately, many people refer to the reduced version of the Mer-

cator projection as a secant projection, and to the standard parallels as
secant parallels. This is misleading, as this projection is not perspective
and we used neither a secant cylinder nor a central projection to derive
it, we just did some maths. The consequence of this incorrect use of
terminology is that properties of the stereographic projection is general-
ized erroneously to all mappings. Widespread but easily disprovable
misconceptions are that secant projections can always be obtained by
reducing the corresponding tangent projection and that secant lines
are always distortion-free, with reduction of size between them and
enlargement elsewhere.
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XIII. Other cylindrical projections

The derivation of the inverse projection formulae can
be found in App. H.

The transverse Mercator projection is called the
Gauss–Schreiber projection, although it was actually first
derived by Lambert. It is considered to be a conformal
projection with a favourable distortion for areas along a
meridian. Its graticule is similar to that of the Cassini pro-
jection, distinguished from it by the fact that in the Cas-

sini projection the meridians are placed along the Equator
evenly, whereas in the Gauss–Schreiber projection the
meridians cross the Equator at increasingly greater dis-
tances away from the Prime meridian (Fig. XIII.4).

Figure XIII.4: Gauss–Schreiber projection for the Atlantic Ocean

XIII.3 Rarely occurring cylindricals

Although the Mercator projection is not really favour-
able for world maps, it is still overused today. A problem
is that the image of the poles is at infinity, which means
that the projection has to be arbitrarily truncated at a
bounding latitude. There has been a demand for map-
pings that resemble the Mercator projection, but the
poles are not mapped into infinity.

Among the quasi-perspective cylindricals, Braun

found a version with the centre of projection in the plane
of the Equator, two-fifths spherical radii away from the
axis of revolution. Although this mapping is very similar
in appearance to the Mercator projection, it is not the
same, since it is not conformal, nor is the image of the
pole at infinity. This research demonstrates that Mer-

cator’s projection is indeed not possible to develop as a
perspective mapping.*

Somewhat more popular is the Miller projection, pub-
lished in 1942, which multiplies the latitude by four-fifths
before applying the Mercator projection (c = 1) and then
divides the vertical coordinate by the same number after
the mapping:

y =
5R
4

lntan
(
45° +

2ϕ
5

)

Figure XIII.5: Miller projection

This projection, rarely used in atlases and wall maps,
is aphylactic and, unlike the Mercator projection, can be
used to represent the poles (Fig. XIII.5).

* Although this statement seems obvious, it is unfortunately not: A
few years ago, for example, a postage stamp was issued in Germany
under the title ‘500. Geburtstag Mercator’, showing this mapping as a
quasi-perspective projection.
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Lesson fourteen

Cylindricals for the ellipsoid of revolution

XIV.1 Cylindricals in normal aspect
In cylindrical map projections using an ellipsoid as the
reference frame, the constant c, which determines the spa-
cing of the meridians, takes a different form. Accordingly:

x = c�Λ
Consequently, the linear scales along the graticule lines

of cylindricals are:

h =
1

M(Φ)
dy
dΦ

k =
c

N (Φ)cosΦ

That is, latitudes ±Φs will be equidistant if c =
N (Φs)cosΦs.

The cylindrical projection equidistant in meridians is
given by the solution of the equation h = 1:

y =

ΦU
0°

M(Φ)dΦ

For the equal-area cylindrical, we solve the equation
hk = 1 and the constant of integration can be omitted
because it only causes a vertical translation:

y = a2
1− e2

2c

( sinΦ
1− e2 sin2Φ

− 1
2e

ln
1− e sinΦ
1+ e sinΦ

)
For the conformal cylindrical, the constant of integra-

tion in the function obtained by solving the equation h = k
can also be omitted:

y = c ln
[
tan

(
45° +

Φ
2

)(1− e sinΦ
1+ e sinΦ

)e/2]
XIV.2 Cassini–Soldner projection

The Cassini–Soldner projection is a generalization of the
Cassini projection (transverse Plate Carrée projection)
to an ellipsoid of revolution. The Cassini projection is
equidistant in the central meridian coinciding with the
metaequator and in the perpendicular metameridians.
We want to keep this for the ellipsoid of revolution so that
the central meridian remains equidistant and the geodesic
lines perpendicular to it are mapped to straight lines
perpendicular to it, along which there is also equidistancy.
These conditions clearly define the projection over most
parts of the ellipsoid of revolution.*

* In a small area opposite the central meridian, this definition is
ambiguous, but since this projection will not be used at a large distance
from the central meridian anyway, this is not a practical problem.

This mapping was created by Soldner in 1810. The
first topographic mappings in Europe were developed in
this projection before the spread of modern conformal
projections. The practical computation of coordinates
can be done by solving geodetic problems on an ellipsoid
(Sec. V.4) or by Mugnier’s approximate series, which de-
mands less computation power. The latter is only reliable
in the narrow environment of the central meridian, but
since this is typically the only place where this projection
is useful anyway, this is the form typically used in GIS.

XIV.3 The Pseudo Mercator

The Pseudo Mercator is the favourite map projection of
on-line map providers. What is the ideal projection for a
zoomable on-line map?

• Whatever part I zoom in on, North should always be
up. That is, it should be a cylindrical projection.

• Whatever part I look at, there should be locally no
noticeable distortion. Maps showing local similarity
transformations are conformal, so only the Mercator

projection remains.
• Keep the computational complexity of the formulae

simple! Spherical formulae require fewer resources
on the server than complex ellipsoidal formulae.

For the aforementioned conditions, the spherical con-
formal cylindrical was selected. To project the ellips-
oidal data onto a sphere with as little computation as pos-
sible, the Google auxiliary sphere (Sec. IX.3, Fig. XIV.1)
was chosen. Since this auxiliary sphere is aphylactic,
the Pseudo Mercator is not a conformal projection in
a strict sense either, but its angular distortion is very
small (nowhere more than half a degree). The deviation
between the true conformal cylindrical and the Pseudo
Mercator is of the order of 10 km.

WGS84

Φ,Λ

Google Earth

ϕ,λ

Projection
to sphere

Pseudo Mercator
x,y

Mercator

projection

Figure XIV.1: The Pseudo Mercator projection

The projection was first used by Google Maps, launched
in 2005, and became a de-facto standard. Since it is not
suitable for world maps, it is now only used at higher
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XIV. Cylindricals for the ellipsoid of revolution

zoom levels in Google Maps, but it is still used in the back-
ground for storing data and alternative map providers
still display their world maps in this projection.

XIV.4 Gauss–Krüger projection

Create a conformal projection that maps a selected me-
ridian with no distortion and its surroundings with little
distortion. In the case of a spherical reference frame, the
problem is straightforward. We know that the Mercator

projection is conformal and maps the Equator without
distortion. Let us rotate the metacoordinate system into a
transverse aspect, i.e. let the metapole fall on the Equator!
The metaequator then falls on the bimeridian at ±90°
from the metapole. By applying the Mercator projection
to the metacoordinates, this bimeridian will be undis-
torted and the whole projection will be conformal, so the
solution is the Gauss–Schreiber projection.

The situation is not so simple for the ellipsoid of revolu-
tion. Since we defined the metagraticule on a sphere, we
would have to convert the ellipsoid to an auxiliary sphere.
As we want to preserve conformality, only the conformal
sphere would be an option. However, a double mapping
of a conformal sphere and a transverse Mercator projec-
tion would not be true-scale in the central meridian, since
the conformal sphere can only have a selected latitude
without distortion. Therefore, only a projection directly
from the ellipsoid of revolution to a plane is suitable.

It may sound surprising, but if you define the distor-
tions of a conformal projection along a single arbitrary
smooth curve, it clearly defines the entire projection.* In
the present case, the equidistancy of the central meridian
is predefined, i.e. this and the conformality define a single
projection. The final result can be written in this form:†

x = A0(Φ) +A2(Φ)
(�∆Λ)2

+A4(Φ)
(�∆Λ)4

+ . . .

y = A1(Φ) �∆Λ+A3(Φ)
(�∆Λ)3

+A5(Φ)
(�∆Λ)5

+ . . .

The formulae for the first two coefficients are simple:

A0(Φ) =

ΦU
0

M(Φ)dΦ

A1(Φ) =N (Φ)cosΦ

The recursive formulae for other coefficients Ai (i =
2,3, . . . ):

Ai =
(−1)i−1

i
N (Φ)cosΦ
M(Φ)

dAi−1
dΦ

The mapping was formulated by Gauss, while the series
for practical application was computed by Krüger in
1912, and is therefore known as the Gauss–Krüger pro-
jection. The series converges only for small ∆Λ, and Lee’s
formulae containing elliptic functions can be applied far

* The reason lies deep in mathematical analysis. A conformal map-
ping between two map planes parametrized by complex numbers can
only be established by a function that is differentiable over an open
subset of the complex plane (Sec. XXIX.1).

† The complicated derivation is based on a series expansion of el-
liptic integrals defined over the complex plane.

away from the central meridian. Popular GIS software
compute with series, so the mapping can only be dis-
played correctly in the vicinity of ca. 10° from the central
meridian. Do not blindly trust the image of farther parts!

Although the projection looks similar to the transverse
conformal cylindrical, it is in fact not quite the same. For
example, the conformal cylindrical projection maps the
two opposite points of the sphere into infinity, whereas
the Gauss–Krüger projection maps the entire ellipsoid
into a finite shape (Fig. XIV.2). Although we would not do
this from a strictly mathematical point of view, we classify
it in the family of cylindricals due to its derivation.

Figure XIV.2: Gauss–Krüger projection of the ellipsoid WGS84

We use this mapping to represent the narrow environ-
ment of a central meridian. For topographic purposes, we
divide the Earth into 6° wide ellipsoidal lunes, known as
zones, denoted by numbers starting from meridian −180°
(Fig. XIV.3). Zones are further divided into 4° wide bands,
denoted by capital letters starting from the Equator.

The official projection of the Warsaw Pact was the
Gauss–Krüger projection system. The datum S42 (also
known as Pulkovo) based on the Krasovskiy ellipsoid
was chosen as the reference frame. In Hungary, from the
beginning of the Soviet occupation until the accession to
NATO, military cartography (and for a short time, civil
cartography) used this system.‡ For geodetic purposes,
several countries (mostly in Eastern Europe, but also in
Austria, Germany and the southern Slavic countries) use

‡ The introduction of the projection in Hungary was not without
its problems: the incoming Soviet commanders expected the army to
immediately survey and map the territory of the country in the Gauss–

Krüger projection. As soon as the soldiers handed over the first maps of
the Tiszahát region, the Soviets immediately tried to match them with
their own map of Transcarpathia, but there was a gap of about 100m
between them! Naturally, a scandal broke out immediately, and the
Soviets accused the Hungarians of sabotage. All that really happened,
of course, was that the Soviets did not say what reference frame they
were using. The Hungarians had already used the Gauss–Krüger pro-
jection during World War II, because the German army used it in all its
battlegrounds. The Hungarians were happy, because the base points
had already been converted to this system. Yes, but the Germans then
defined this mapping for a Bessel ellipsoid with the datum RDN1940!
Of course, they could explain to the Soviets afterwards about the dis-
crepancy between the Krasovskiy and the Bessel ellipsoids or about
datum conversions, the ‘competent’ Soviet comrades were very good at
everything. . . Let this story remain as a reminder that without a geodetic
datum the description of a map projection is never complete!
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Figure XIV.3: Zones and bands of the Gauss–Krüger projection

this projection, but the distortions increase rapidly away
from the central meridian, so we also see 2° or 3° wide
zones. A slightly modified version is the official projection
of British and Irish cartography.

XIV.5 The systems of NATO

NATO also developed its own projection system. It uses
two types of projection: the Universal Transverse Mercator
(UTM) between 80° S and 84° N, which is not a Mercator

projection, and the Universal Polar Stereographic (UPS),
which is not stereographic (Sec. XI.4), at the poles.

The UTM projection actually applies the formulae of the
Gauss–Krüger projection system to the ellipsoid WGS84,
but with a reduction of 0·9996 for better distortions. As
a result, the distortions are more favourably distributed:
two lines almost parallel to the central meridian will be
free of distortion, with a reduction of length between
them and an increase in length outside them. To prevent
negative horizontal coordinates, a false easting of 500 km
is used. In the Southern Hemisphere, a false northing of
10 000 km is also applied so that the vertical coordinate
is also positive. The bands of UTM are 8° wide and are
denoted by letters starting with C at latitude 80° S, but
the letters I and O are omitted. Hungary is in zones T and
U. The northernmost band, X, is 12° wide.

Topographic maps of Southern Europe and the Scand-
inavian countries are all drawn in UTM, but there are
slight irregularities in the zones near Norway. Since
NATO accession (the 1990s), Hungarian military topo-
graphy has been using UTM zones 33 and 34, bounded
by the meridian 18° near Veszprém.

To avoid the need to report three numbers (zone, x, y) to
define a location, NATO has developed a military geocode
system called Military Grid Reference System (MGRS). The
first two digits of the reference are the zone (in the case

of the UPS, this is omitted, of course), followed by the
designation of the band.

This is followed by the letter indicating a column:
between the coordinates 100 km and 900 km, zones are
divided into 8 columns, each 100 km wide. The letters
are repeated for each three zones: A-H, J-R and S-Z, from
west to east, I and O are omitted. The third letter marks
the row. Rows are also 100 km wide, their designation
starts with A for odd zones and F for even zones, increas-
ing in both directions from the Equator. Letters I, O, W,
X, Y and Z are omitted for the rows, so after reaching the
letter V, the designation starts again with A, the letters
are recurring at every 2000 km. In the UPS, a grid of
100×100 km is also used, but letters D, E, M, N, V and W
are omitted for columns so that no UTM and UPS squares
of the same letter are next to each other, only I and O are
omitted for rows. The designation of the 100 × 100 km
squares for Hungary is shown in Fig. XIV.4.

18°

48°

18°

48°

18°

48°

30
0
00
0

40
0
00
0

50
0
00
0

60
0
00
0

70
0
00
0

50
0
00
0

60
0
00
0

70
0
00
0

5 000 000

5 100 000

5 200 000

5 300 000

5 400 000

5 500 000

L

M

N

P

Q

W X Y B C D E F

R

S

T

U

VWQ XQ CV DV EV FV

WP XP CU DU EU FU

WN XN CT DT ET FT

WM XM CS DS ES FS

WL XL CR DR ER FRY
L

Y
M

Y
N

Y
P

Y
Q BV

B
U

B
T

B
S

B
R

33U

33T

34U

34T

Figure XIV.4: MGRS in Hungary
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CH1903+ (Bessel)

Φ,Λ

Projection
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ϕ,λ
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ϕ′ ,λ′

Mercator

projection LV95

x,y

Figure XIV.5: Rosenmund projection in Switzerland

Last come the digits of the coordinates, first x, then y.
Since the designation of rows and columns gives the co-
ordinate unambiguously up to the place value of 100 000,
only the remaining 5 digits are written. If less precision is
required, it is possible to write fewer digits, in which case
the coordinates are truncated. For example, the tram stop
Petőfi híd, budai hídfő is located under the coordinates
UTM 34T 353755 5259967, while the MGRS reference
with accuracy of 100m is 34TCT537599.

XIV.6 Rosenmund and Hotine
projections

Like the stereographic projection, the Mercator projec-
tion is often used in oblique aspect with reference frame
as an ellipsoid of revolution. We do not have direct el-
lipsoid-to-plane formulae because it is not possible to
represent a general geodesic line as an equidistant line in
an ellipsoidal conformal projection. We, therefore, resort
to a double mapping.

In 1903, the Swiss Rosenmund developed the following
projection: in a first step, he transformed the ellipsoid of
revolution into a Gaussian conformal sphere of very low
distortion. The standard parallel of the auxiliary sphere
is the latitude of the Bern Observatory. In the second step,
the spherical oblique Mercator projection is used (c = 1,
i.e. the mapped metaequator is true-scale), the intersec-
tion of the metaequator and the prime metameridian on
the sphere is again the Bern Observatory. The modern
Swiss topographic projection differs from this in that it
uses a uniform scaling and applies a translation against
the negative coordinates on the coordinate axes. Since all
transformations (Fig. XIV.5) were conformal, their succes-
sion was also a conformal mapping.

This mapping is very similar to the Hungarian official
map projection (EOV), which:

• Uses the datum HD72 based on ellipsoid IUGG67.
• The ellipsoidal latitude of the standard parallel on

the Gaussian auxiliary sphere is Φs = 47°10′ .
• The spherical latitude of the metaequator is 47°6′ .
• The coordinates of the cylindrical map were multi-

plied by 0·999 93 (reduced projection), yielding two
true-scale metaparallels. The distribution of the dis-
tortions is thus more favourable: there is a reduction
of the length between the two distortion-free lines
and an increase in length outside them. The only
areas where the linear scale exceeds the required
value of 1 : 10 000 are near Torna and Zemplén and
in the Ormánság region.

• The coordinate axes are unusual: x points to the
North and y to the East. To avoid negative signs, they

have been shifted by 200 km to the South and 650 km
to the West. Thus, in Hungary, the vertical coordin-
ates are less than 400 km, the horizontal coordinates
are always greater than this (Fig. XIV.6).
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Figure XIV.6: The EOV coordinate system

Introduced in 1975, the EOV is used often in Hungary:
except for military topographic and geological maps, al-
most all map databases in Hungary use this system. The
most important application is the EOTR, which is a series
of topographic maps covering the whole territory of Hun-
gary in this system.

The EOV implementation of popular open-source GIS
is not accurate because it approximates it with the Rosen-

mund projection. The only difference, as we have seen, is
that the standard parallel of the Gaussian auxiliary sphere
is not parametrizable, but coincides with the latitude of
the metaequator. The error is of the order of cm.

In 1946, British geodesist Hotine used a surface of
revolution shaped like a turnip (aposphere) instead of a
Gaussian sphere as an intermediate surface for the con-
formal double projection. This surface has a constant
Gaussian curvature, i.e. a distortion-free projection can be
constructed between the turnip and the sphere (Sec. VI.1).
The projection between the turnip and the plane employs
a conformal mapping that maps a geodesic line of the
turnip to a straight true-scale line. Hotine’s and Rosen-

mund’s formulae theoretically give exactly the same pro-
jection, but because of the different derivation, Hotine’s
projection must be parametrized differently.* This pro-
jection was developed to represent Malaysia, which is
located along two oblique geodesic lines. This projection
can also be used to approximate the EOV if Rosenmund’s
projection is not supported by the software.

* Because of its complexity, this projection is known among
geodesists as the Malayan monster.
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Lesson fifteen

Aphylactic conic projections

XV.1 Conic projections

In conic projections, the images of meridians are concur-
rent straight lines and the images of parallels are con-
centric arcs of circles perpendicular to them. Because of
their equal spacing, the angle formed by the meridians
is in direct proportion to the difference in longitude. For
this reason, conic map projections differ from azimuthal
projections only in that the polar angle is nλ (Fig. XV.1).
Together with the cone constant 0 < n < 1 (ratio of the
angle between mapped meridians to their difference in
longitude), we are still free to choose a strictly increas-
ing radius function ϱ. The conversion between polar and
Cartesian coordinates:*

x = ϱ sin(nλ)

y = −ϱcos(nλ)

x

y

ϱnλ

Figure XV.1: Polar coordinates in conic map projections

The conic projection is pointed-polar if ϱ = 0 at δ = 0,
otherwise it is flat-polar. When calculating the linear
scales along graticule lines, we use the relation found in
Sec. X.1, namely dϱ/dϕ = −dϱ/dδ:

h =

√(
�x
�ϕ

)2
+
(
�y
�ϕ

)2
R

=

√(
−dϱ

dδ

)2
sin2(nλ) +

(
−dϱ

dδ

)2
cos2(nλ)

R
=
1
R

dϱ
dδ

* In order to get simple formulae, we assume here that the origin is
at the centre of the mapped parallels. In geodesic practice, however,
to avoid excessive numbers for coordinates, we place the horizontal
axis at the tangent of some freely chosen central parallel. The colatitude
of the central parallel is most often chosen as δm = arccosn, which
usually coincides with the equidistant parallel in conic maps with one
equidistant parallel, and lies between the equidistant parallels if the
conic projection has two of them.

k =

√(
�x
�λ

)2
+
(
�y
�λ

)2
Rcosϕ

=

√
ϱ2n2 cos2(nλ) + ϱ2n2 sin2(nλ)

Rsinδ
=

ϱn

Rsinδ

XV.2 Perspective conics

To derive perspective conic projections, see Fig. XV.2. De-
note half the aperture of the cone with σ ! Then we can
see that the radius of the mapped parallels before rolling
out is ϱ sinσ from the right triangle of hypotenuse ϱ. That
is, the circumference of the mapped parallel on the cone
is 2πϱ sinσ . Developing the cone, the radius of the paral-
lel rolled out to an arc becomes ϱ and the central angle
will be n2π. Since the development of the cone is an iso-
metry, the arc of the circle has the same length as the
circumference of the original circle:

n2πϱ = 2πϱ sinσ

n = sinσ

Thus, in perspective conics, the descriptive meaning of
the cone constant n is the sine of half the cone’s aperture.

R

P

δ

Rsinδ
ϱ sinσ

σ

f R

Focal point

cR

cR− ϱcosσ

ϱ

P ′

R
co

sδ

Figure XV.2: The principle of perspective conics

As usual, let the centre of projection be at a distance
of f R from the centre of the sphere, while the apex of
the cone is placed at a distance of cR from the centre of
projection. The distance marked by the red brace and the
vertical leg of the right triangle of hypotenuse ϱ (ϱcosσ )
together give just cR, of which the distance highlighted
by the brace is cR− ϱcosσ . The two right triangles of the
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XV. Aphylactic conic projections

red hypotenuses are similar, their aspect ratios are the
same:

ϱ sinσ
Rsinδ

=
cR− ϱcosσ
R(f + cosδ)[

sinσ
Rsinδ

+
cosσ

R(f + cosδ)

]
ϱ =

c
f + cosδ

f sinσ + sinσ cosδ+ cosσ sinδ
Rsinδ(f + cosδ)

ϱ =
c

f + cosδ

ϱ =
cRsinδ

f sinσ + sin(σ + δ)

Perspective conics are even rarer than perspective cyl-
indricals. This is because they are aphylactic (h , k and
hk , 1), their distortions are very unfavourable (Fig. XV.3).
Perspective conics are pointed-polar,* their only benefit is
that their tangent versions will provide the basis for the
construction of polyconic projections in Sec. XXVI.1.†

Figure XV.3: Perspective conic

Consider Fig. XV.4. The two acute angles of a right
triangle are each other’s complementary angles, so σ =
90°−δs. Also, by formulating the tangent of δs, the radius
ϱs of the tangent parallel can be calculated:

ϱs = R tanδs
n = sinσ = cosδs

After formulating the linear scales along graticule lines
and a simplification full of trigonometric wizardry and

* Except for the case f = −1.
† As among cylindrical projections, there are quasi-perspective pro-

jections among conic projections. In these, the centre of projection is
located on the plane perpendicular to the generatrix of the cone and
passing through the centre of the sphere. For example, from the opposite
point of the sphere, one can project in a manner similar to stereographic
projection, while from an infinite distance, one can project with parallel
rays in a manner similar to orthographic projection. (The latter is not
the same as the conic projection with equidistant parallels, because the
parallel rays are not vertical this time, but oblique!) Quasi-perspective
conics are flat-polar, neither of them has special distortions, so they are
of no practical use.

Rδs

σ
ϱs

Figure XV.4: Tangent perspective conic projection

hazards of sign error, it can be seen that h = k = 1 at the
tangent parallel, i.e. it is true-scale.‡ Surprisingly, we will
find that these three properties hold for non-perspective
conic projections with one standard parallel.

XV.3 Conic projection with

equidistant parallels

Place the centre of projection infinitely far away, i.e. the
rays should be parallel vertical lines. Then f →∞ and
c → ∞. In the denominator of the radius function, it
is insignificant to add sin(σ + δ) to the infinitely large
number. Since f and c are equally infinite, they can be
simplified. The vertical positioning of the cone does not
change the projection because of the parallel rays, so it
can be considered tangent without loss of generality. In
this case, the relation sinσ = cosδs is applied:

ϱ =
Rsinδ
cosδs

n = cosδs

h =
1
R

dϱ
dδ

=
cosδ
cosδs

k =
ϱn

Rsinδ
=
Rsinδcosδs
cosδsRsinδ

= 1

Since k = 1, the projection is equidistant in parallels.
It is unsuitable to represent an area larger than a hemi-
sphere. Apart from its theoretical interest, it has no prac-
tical use (Fig. XV.5).

Figure XV.5: Conic projection with equidistant parallels

‡ This is a non-trivial statement, and for secant perspective conics,
it is not even true for secant parallels.
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XV. Aphylactic conic projections

XV.4 Equidistant conic

Among the non-perspective conics, the derivation of the
projection equidistant in meridians (h = 1) is straightfor-
ward:

1
R

dϱ
dδ

= 1U
dϱ = R

U
dδ

ϱ = R�δ+Rd

The constant of integration d characterizes the radius of
the pole-line, and the two parameters (n,d) allow for one
or two equidistant parallels. Let δ1 and δ2 be equidistant!
For these two parallel circles, write the equation k = 1:

R
(�δ1,2 + d

)
n

Rsinδ1,2
= 1

That is

n
(�δ1 + d

)
= sinδ1

n
(�δ2 + d

)
= sinδ2

Subtracting the two equations from each other:

n
(�δ1 − �δ2) = sinδ1 − sinδ2

n =
sinδ1 − sinδ2�δ1 − �δ2

Dividing the two equations by each other:

�δ1 + d�δ2 + d
=

sinδ1
sinδ2(�δ1 + d

)
sinδ2 =

(�δ2 + d
)
sinδ1�δ1 sinδ2 − �δ2 sinδ1 = d(sinδ1 − sinδ2)

d =
�δ1 sinδ2 − �δ2 sinδ1

sinδ1 − sinδ2

Note that at the equidistant parallels k = 1 and every-
where h = 1, i.e. the equidistant latitudes are also true-
scale standard parallels (h = k = 1). At other latitudes:

k =
ϱn

Rsinδ
=

(�δ+ d
)
n

sinδ

Substituting δ = 0 into the formula above, we obtain
that the distortion at the pole is infinite. The exception is
if d = 0 (the projection is pointed-polar) because then we
get a limit of type �δ/sinδ, which approaches 1, so k = n.
At the South Pole (δ = 180°), the term also diverges to
infinity, so k necessarily has a minimum somewhere, and
increases towards the poles. If we have two standard
parallels, it follows that between them k < 1, and k > 1
outwards.

This mapping is called the equidistant conic (Fig. XV.6)
and is attributed to de L’Isle, although he was not the
first to use it. This mapping is one of the most favour-
able projections for areas extending along parallels (its

(a) Equidistant conic

(b) Equidistant conic for the Indian Ocean

(c) Ptolemy I projection

Figure XV.6: Conic projections with equidistant meridians
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XV. Aphylactic conic projections

isocols run along parallels) so, a more favourable conic
projection is not worth using because of the complexity of
the calculations. The projection can be recognized by the
even spacing of the parallels. It is most commonly used
for middle latitudes, but in theory, there is nothing to stop
the two standard parallels being in different hemispheres.
It is advisable to pick the standard parallels close to the
edges of the area rather than the centre.

Special cases of projection are obtained by the special
choice of δ1,2. If δ2 = 0, i.e. taken at the pole, then substi-
tuted back into the equations:

n =
sinδ1 − 0�δ1 − 0 =

sinδ1�δ1
d =

�δ10− 0sinδ1
sinδ1 − 0

= 0

Thus, we obtain a pointed-polar conic. Interestingly,
the pole is not true-scale at the same time: although h = 1,
k = n emerged at the pole. The resulting angular distor-
tion is visible to the naked eye: the meridians do not form
true angles at the pole. This variant is the work of the
Russian chemist Mendeleyev, and is not actually used in
practice.

Let us consider the version where the two standard par-
allels coincide (δ1 = δ2 = δs). Since the direct substitution
leads to divisions of type 0/0, we only substitute δs for δ2,
and write δs+∆δ for δ1 temporarily, then let ∆δ approach
zero and apply L’Hôpital’s rule:

n = lim
∆δ→0

sin(δs +∆δ)− sinδs(�δs + �∆δ)− �δs
= lim

∆δ→0

cos(δs +∆δ)
1

= cosδs

d = lim
∆δ→0

(�δs + �∆δ)sinδs − �δs sin(δs +∆δ)

sin(δs +∆δ)− sinδs

= lim
∆δ→0

sinδs − �δs cos(δs +∆δ)
cos(δs +∆δ)

= tanδs − �δs
From the above formulae, it can be seen that, just like

the case of tangent perspective conics, the radius of the
standard parallel is just R tanδs and the cone constant is
cosδs. We call this mapping the Ptolemy I projection.*

If both parallels approach the pole (δs = 0), the above
formulae give n = 1 and d = 0, i.e. ϱ = R�δ, so we get the
azimuthal equidistant, in which the pole becomes true-
scale.

It is exciting to consider the case δ2 = 180°− δ1. Then
n = 0 is obtained, i.e. the mapped meridians are parallel.
Moreover, since the denominator of d is zero and the
numerator is not zero, d→∞, i.e. the parallel circles have
infinite radii and are therefore parallel lines. Ultimately,
we have the equidistant cylindrical. This shows that the
conic projections are a transition between azimuthals and
cylindricals.

* We find this projection in Geographica, his work written in the 2nd

century, which laid the foundations for cartography.
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Lesson sixteen

Equal-area & conformal conic mappings

XVI.1 Albers equal-area conic

First, the equal-area conic (hk = 1) is calculated. Let the
constant of integration be R2/n+R2d/2n!

1
R

dϱ
dδ

ϱn

Rsinδ
= 1U

ϱdϱ =
R2

n

U
sinδdδ

ϱ2

2
= −R

2

n
cosδ+

R2

n
+
R2d
2n

ϱ2 =
R2

n

(
−2cos2

δ
2

+ 2sin2
δ
2

+ 2cos2
δ
2

+ 2sin2
δ
2

+
2d
2

)
ϱ =

R
√
n

√
4sin2

δ
2

+ d

The constant d determines the radius of the pole-line,
since for the substitution δ = 0, we get ϱ = R

√
d/n. By set-

ting n and d appropriately, one or two arbitrarily chosen
parallels may be equidistant.* Let our two equidistant par-
allels be δ1 and δ2! At these latitudes k = 1, so k2 = 1.
Take the formula ϱ2 not from the final solution, but from
the third line of the derivation above.

ϱ2n2

R2 sin2 δ1,2
= 1

2
(
−R
2

n
cosδ1,2 +

R2

n
+
R2d
2n

)
n2 = R2 sin2 δ1,2

That is, after simplifying by R2:

n(2− 2cosδ1 + d) = sin2 δ1
n(2− 2cosδ2 + d) = sin2 δ2

Subtracting the two equations from each other:

n(2cosδ2 − 2cosδ1) = sin2 δ1 − sin2 δ2

n =
1− cos2 δ1 − 1+ cos2 δ2
2(cosδ2 − cosδ1)

=
(cosδ2 + cosδ1)(cosδ2 − cosδ1)

2(cosδ2 − cosδ1)
=

cosδ1 + cosδ2
2

* Conic projections with two standard parallels are often called sec-
ant conics in the literature, and there are beautiful illustrations of cones
intersecting the sphere in two circles. This is a very illustrative explana-
tion, with only one flaw: it is absolutely false. Such conic maps, when
rolled to form a cone, will not happen to have the true-scale parallels
where the cone intersects the sphere. In addition, these projections
may not always be obtained by uniform scaling of the version with one
standard parallel, so the term reduced should also be avoided for not
conformal projections.

The first equation of the system of equations:

n(2− 2cosδ1) +nd = sin2 δ1

nd = sin2 δ1 −
2(1− cosδ1)(cosδ1 + cosδ2)

2

Before calculating further, note that:

cosδ = cos2
δ
2
− sin2

δ
2

= cos2
δ
2

+ sin2
δ
2
− sin2

δ
2
− sin2

δ
2

= 1− 2sin2
δ
2

Now get the ball rolling!

d =
sin2 δ1 − (1− cosδ1)(cosδ1 + cosδ2)

n

=
sin2 δ1 − (1− cosδ1)

(
1− 2sin2 δ12 + 1− 2sin2 δ22

)
n

=
sin2 δ1 − 2

(
1− 1+ 2sin2 δ12

)(
1− sin2 δ12 − sin2 δ22

)
n

=
4sin2 δ12 cos2 δ12 − 4sin2 δ12

(
cos2 δ12 − sin2 δ22

)
n

=
4sin2 δ12

(
cos2 δ12 − cos2 δ12 + sin2 δ22

)
n

=
4sin2 δ12 sin2 δ22

n

That was a real bear! This mapping is called the Al-

bers equal-area conic (Fig. XVI.1). Although he published
the projection as early as 1805, we rarely see it until the
middle of the 20th century. Its popularity is now on the
rise, especially in the USA. Let us examine the distortions!

h =
1
R

dϱ
dδ

=
4×2
2 sin δ

2 cos δ2

2
√
n
√
4sin2 δ2 + d

=
sinδ

√
n
√
4sin2 δ2 + d

k =
ϱn

Rsinδ
=
√
n

sinδ

√
4sin2

δ
2

+ d

This time, the equidistant parallels are also standard
parallels, because here k = 1 and h = 1/k = 1 due to equi-
valency. At the poles, the numerator of h and the denom-
inator of k are zero, so the former is zero and the latter
tends to infinity. Again, the case d = 0 is exception, be-
cause then we can simplify by 2sinδ/2 so that at the North
Pole h = 1/

√
n and k =

√
n. Apart from this pointed-polar

case, it can be seen that since k is infinitely large at the
poles and the projection has two standard parallels, h < 1
and k > 1 outward from the standard parallels, so the ob-
jects are stretched in the east-west direction. On the other
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XVI. Equal-area & conformal conic mappings

hand, between the two standard parallels, where h > 1
and k < 1, the stretching is in the north-south direction.
This helps us to recognize the projection: the parallels in
the middle of the map cross the meridians less densely
than at the bottom and top of the map.

Special cases will also be of interest. If δ2 = 0, i.e. at the
pole, then:

n =
cosδ1 + 1
2

=
cos2 δ12 − sin2 δ12 + sin2 δ12 + cos2 δ12

2
= cos2

δ1
2

d =
4sin2 δ12 × 0

n
= 0

This pointed-polar conic projection (d = 0) is called
Lambert equal-area conic and has been known since 1772.
Contrary to our expectation, the pole is not true-scale
because h = 1/

√
n and k =

√
n, so angular distortion is

present. This is logical since mapped meridians cannot
arrive at the pole at their true angle.

Let us now construct a flat-polar equal-area conic with
only one standard parallel! This can be easily done by
substituting δ1 = δ2 = δs, this time no limit calculus is
needed:

n =
cosδs + cosδs

2
= cosδs

d =
4sin2 δs2 sin2 δs2

n
=
4sin4 δs2

cosδs

Substituting back and applying a sufficient amount of
trigonometric magic, it can be seen that, less and less
surprisingly, the radius of the standard parallel becomes
again R tanδs.

If both standard parallels are placed at the pole (δs = 0),
the result of the above formulae is n = 1 and d = 0, i.e. we
get the Lambert azimuthal equal-area. If δ2 = 180°− δ1,
then n = 0 and d → ∞, giving a limit to the family of
equal-area cylindricals.

XVI.2 Lambert conformal conic

Only the conformal version (h = k) is left. In the deriva-
tion, the constant of integration is lnd + lnR.

1
R

dϱ
dδ

=
ϱn

RsinδU
1
ϱ

dϱ = n
U
1

sinδ
dδ

lnϱ = n lntan
δ
2

+ lnd + lnR

ϱ = dR tann
δ
2

This time, the parameter d denotes a uniform scaling,
the projection is in any case pointed-polar.* The South Pole
is mapped to infinity. This time again, two equidistant
parallels can be set by choosing n and d appropriately.

* In general, there is no flat-polar conformal projection, unless the
pole at infinity is considered to be a pole-line.

(a) Albers equal-area conic

(b) Albers projection for Australia

(c) Lambert equal-area conic

Figure XVI.1: Equal-area conics
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Let δ1 and δ2 be the equidistant parallels! Here, let k = 1!
From this:

ϱn

Rsinδ1,2
= 1

ndR tann
δ1,2
2

= Rsinδ1,2

Thus:

nd tann
δ1
2

= sinδ1

nd tann
δ2
2

= sinδ2

Dividing the two equations by each other:

tann δ12
tann δ22

=
sinδ1
sinδ2

n
(
lntan

δ1
2
− lntan

δ2
2

)
= lnsinδ1 − lnsinδ2

n =
lnsinδ1 − lnsinδ2
lntan δ1

2 − lntan δ2
2

d cannot be expressed in such a nice form, but it can be
expressed from either of the two equations:

d =
sinδ1
n tann δ12

=
sinδ2
n tann δ22

The mapping is called the Lambert conformal conic or
the Lambert–Gauss projection (Fig. XVI.2), and like Lam-

bert’s other projections, it was published in 1772. As it
received little attention at first, its authorship remained
unknown for a long time, and several scientists of map
projections, including Gauss, created it independently.
How do the distortions of projection arise?

h =
1
R

dϱ
dδ

=
dn tann−1 δ2
2cos2 δ2

=
nd

2sin1−n δ2 cos1+n δ2

k =
ϱn

Rsinδ
=

nd tann δ2
2sin δ

2 cos δ2
=

nd

2sin1−n δ2 cos1+n δ2

Interestingly, at the North Pole, the mapping is not
conformal, since the meridians do not meet at their true
angles. We can see from the formula that at both poles
h = k→∞, i.e. the distortions are infinitely large.* Since

* An interesting property of conformal projections is the singularity.
It is known from the analysis of complex numbers that a mapping is
conformal if and only if the C→ C (complex) function describing it
is differentiable. However, discontinuities necessarily appear in the
projections, so our function here is not continuous and therefore cannot
be differentiable. Therefore, the mapping at the endpoints of the dis-
continuities (and sometimes elsewhere, but even then only at isolated
points) is necessarily singular, not differentiable. Conformal projections
exhibit three types of singularity:

The mapped point may be at infinity, in which case the conformal-
ity is not definable (for example, the South Pole in the stereographic
projection). The point may have infinitely large distortions (l → ∞
or very rarely l = 0), the conformality is lost at this single point (see
the North Pole in the projection we are discussing). It is rare that a
line bifurcates without a break at a point, in which case the conform-
ality is preserved (turn to Fig. XIV.2 and you will find points on the
Gauss-Krüger projection where the Equator divides into two branches).

(a) Lambert conformal conic

(b) Křovák projection

Figure XVI.2: Conformal conics

S-JSTK (Bessel)

Φ,Λ

Projection
to sphere Conformal sphere

ϕ,λ

Metacoordinates

ϕ′ ,λ′

Rotation

Lambert conic
conformal Křovák

x,y

Figure XVI.3: Křovák projection in Czechia and Slovakia
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they are of finite magnitude between the two poles, there
is a minimum somewhere between the two equidistant
parallels. Thus, between the two equidistant parallels h =
k < 1, away from them h = k > 1. This helps to recognize
projection: the mapped parallels in the middle of the map
intersect the mapped meridians more densely than at the
northern and southern edges of the map. The equidistant
parallels are now also standard parallels: if k = 1, then
h = k = 1.

What happens if δ1 = δ2 = δs? The division cannot be
done in the formula n, so again we resort to the trick
δ1 = δs +∆δ, as ∆δ→ 0. Again, we use L’Hôpital’s rule to
defeat the ugly limit!

n = lim
∆δ→0

lnsin(δs +∆δ)− lnsinδs
lntan δs+∆δ

2 − lntan δs
2

= lim
∆δ→0

cos(δs+∆δ)
sin(δs+∆δ)

1
2 tan δs+∆δ

2 cos2 δs+∆δ2

=
cotδs
1

2sin δs
2 cos δs2

= cosδs

It still holds that:

d =
sinδs
n tann δs2

Once again, as n = cosδs, is the radius of the standard
parallel R tanδs? And yes! If we substitute it back into
the radius function, then it will indeed come out. It is as
exciting as watching paint dry.

Since d is just a scaling, you can get any versions with
two standard parallels by reducing the projection with
one standard parallel of the same cone constant. There-
fore, in GIS, it is common that the projection is not para-
metrized by the two standard parallels, but by a single
parallel and a reduction factor.

The Lambert–Gauss projection is preferred by inter-
national aviation because, besides its conformality, it
displays orthodromes shorter than 3000 km as almost
straight lines. The World Aeronautical Chart (WAC) also
uses an ellipsoidal version of this projection for datum
WGS84, but most aeronautical charts are also produced
in this projection. It is also used as a projection for topo-
graphic maps in many countries, especially in the French
culture. It should be used for medium latitudes, for areas
extending along a parallel, because its isocols are arcs of
circles.

In Czechia and Slovakia, the oblique aspect of this pro-
jection is still used in a double projection known as the
Křovák projection (Fig. XVI.3). The reason for this is
that the former Czechoslovakia (today’s Czechia, Slov-
akia, and Transcarpathia of Ukraine) had a curved shape.
They were looking for a projection with isocols follow-
ing this shape. Thus this projection was chosen. Since
the area is not located along a parallel but is rotated, a
graticule rotation is required. This was done in the usual
way, by double mapping. A conformal sphere is calcu-
lated based on the Bessel ellipsoid and the graticule is
rotated so that the metapole is near Helsinki. The con-
formal conic is characterized by the metaparallel δs and a
reduction factor so that the distortions meet the geodetic
requirements almost everywhere in the country. A similar

projection was used in their national atlas to represent
Japan, which has a shape like a banana.

What happens if you move one of the standard parallels
to the pole (δ2→ 0)? In this case, to overcome the quotient
of the logarithms of zero, we repeat L’Hôpital’s rule ad
infinitum with δ2 as an independent variable:

n = lim
δ2→0

lnsinδ1 − lnsinδ2
lntan δ1

2 − lntan δ2
2

= lim
δ2→0

− cosδ2
sinδ2

− 1
2 tan δ2

2 cos2 δ22

= lim
δ2→0

cosδ2 = 1

Now comes the surprise! Contrary to our previous ex-
perience, we did not get a pointed-polar conic (since the
conformal projection was already pointed-polar), but it
was enough to place one of the standard parallels in the
pole to get an azimuthal projection (n = 1). But is not that
the right way? After all, unlike the azimuthal equal-area
or equidistant, we could choose a standard parallel for the
stereographic projection, which is distortion-free. Thus,
if you place one of the standard parallels of the projection
at the pole, the other parallel will be the secant parallel of
the stereographic projection. In the pole, of course, con-
formality is then restored, but equivalency is lost because
the stereographic projection is only distortion-free at the
standard parallel.

The other limit is δ2 = 180°− δ1, which leads by simple
substitution to n = 0, i.e. the Mercator projection.

XVI.3 Ellipsoidal conic projections

The linear scales along graticule lines in conic projections
for an ellipsoid are as follows:

h = − 1
M(Φ)

dϱ
dΦ

k =
ϱn

N (Φ)cosΦ

The equidistant conic projection is obtained from the
solution of the equation h = 1 (d is a constant of integra-
tion):

ϱ = d +

ΦU
90°

M(Φ)dΦ

The equal-area conic is obtained by solving the equa-
tion hk = 1:

ϱ = a

√
1− e2
√
n

√
d − sinΦ
1− e2 sin2Φ

− 1
2e

ln
1+ e sinΦ
1− e sinΦ

We get the conformal conic by solving the equation
h = k:

ϱ = d tann
(
45°− Φ

2

)(1+ e sinΦ
1− e sinΦ

)ne/2
Expressing the constants from two standard parallels

leads to mile-long formulae, but for all versions with a
single standard parallel, n = sinΦs, and the radius of
the standard parallel is N (Φs)cotΦs, which is similar to
spherical maps.
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Lesson seventeen

Applied theory of map projections

XVII.1 Can distortion be useful?

Up until now, we have been struggling to keep the distor-
tions of map projections under control. However, there
are times when distortion is an advantage. Fig. XVII.1
shows such a map. It shows the results of an old election
in Germany. If our map did not contain distortion, it
would be hard to tell that the party in red was the winner,
since typically only a few major cities (Berlin, Hamburg,
and the Saxon industrial cities) were won. If the map ed-
itor were to show the area with slight distortions, it would
look as if the party with the most rural voters, the one in
khaki, had won overwhelmingly. The map editor rightly
compensated for this by plotting the constituencies by
population rather than by actual area.

Figure XVII.1: Example of a distorted cartogram

Such representations are called distorted cartograms.
They can be considered a special kind of map projections
in a broad sense. The distortion can be adjusted accord-
ing to some quantitative measure, but we can also choose,
for example, to plot the distance of objects from a given
point according to the travel time from the centre. A spe-
cial kind of distorted cartogram is the underground map,
where the distance depends on the number of stations
travelled through. There is a variety of software for cre-
ating classical cartograms distorted by quantitative data,
such as ScapeToad.

XVII.2 The focus of map projections

In large cities, streets and places of interest (pictograms)
are often very densely concentrated in the centre of the
city, so the data density is too high; while in the suburbs
there are fewer landmarks to represent in a unit area. For

this reason, it might be a good decision to use a different
map scale in the city centre than in the outer districts.
This problem is addressed by the hyperboloid projection
used in Falk’s urban maps. It takes its name from the fact
that the kilometre grid lines appear as hyperbolae. They
can also be recognized by the fact that the map scale is
shown as an interval (Fig. XVII.2). Projections, in which
the linear scale is deliberately increased at the centre, are
called focused projections.

Figure XVII.2: Map of a town in hyperboloid projection

The mathematics of the mapping is a trade secret, but
the Israeli cartographer Kadmon got a very similar (per-
haps exactly the same) map with the following train of
thought: let the centre of the coordinate system be at the
centre of the city where the linear scale is l0! In distance
ϱp from this, we want a linear scale of lp < l0. For these
two points, we fit a linear function:

l =
lp − l0
ϱp

ϱ+ l0

On the other hand, l is the infinitesimal new length
divided by the old length:

l =
dϱ′

dϱ

dϱ′

dϱ
=
lp − l0
ϱp

ϱ+ l0U
dϱ′ =

U
lp − l0
ϱp

ϱ+ l0dϱ

ϱ′ =
lp − l0
2ϱp

ϱ2 + l0ϱ

With this method, the scale varies continuously. Hun-
garian cartographer Siklósi proposed a method where
the centre of the map is magnified with a lens while the
edges are left unchanged. This is advantageous if the
outer districts are not to be distorted.
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q

ϱϱ′ r

t

f

Figure XVII.3: Creating a focused map using a lens

The centre of the circle of radius r shown in Fig. XVII.3
is at distance r − t from the plane of projection. Thus, the
equation of the circle is:

(q+ r − t)2 + ϱ2 = r2

q =
√
r2 − ϱ2 − r + t

The ratio of the sides of two similar triangles in the
figure is equal:

ϱ′

f + t
=
ϱ′ − ϱ
q

ϱ′
(√
r2 − ϱ2 − r + t

)
= (f + t)ϱ′ − (f + t)ϱ

ϱ′
(
f −

√
r2 − ϱ2 + r

)
= (f + t)ϱ

ϱ′ =
(f + t)ϱ

f + r −
√
r2 − ϱ2

This transformation leaves intact the parts of the map
that are not covered by the lens.

XVII.3 Map projections and GIS

When applying a projection in GIS, it is always necessary
to specify the reference frame and the mapping unam-
biguously. This is quickly identified by the EPSG number,
behind which the type of projection, its parameters and
the reference frame with its placement are stored in a
database. Some important EPSG numbers:
4326 Datum WGS84, geographic coordinates
3857 Pseudo Mercator / datum WGS84
23700 EOV / datum HD72
32633 / 32634 UTM zones 33 / 34 / datum WGS84

In the QGIS application, when you apply a projec-
tion for the first time, a dialogue box will pop up ask-
ing you which transformation to choose. If there are
three parameters in the parameter set, then it will use the
Molodenskiy transform, if there are seven parameters,
then it will use the more accurate Helmert transform
(Sec. VI.4). Sometimes, for a given datum, there may be
several very different parameter sets, in which case what
usually happens is that the difference between them is
negligible in a horizontal sense, but there will be signific-
ant differences in the result in the vertical sense. When
converting 3D data, particular care must be taken (see
also App. D)!

As an example, the case of the EOV is shown in
Fig. XVII.4. The transformation one (in the pop-up) has

seven parameters but is not recommended because of its
inaccuracy as described. The selected transformation four
(read in the main window) has three parameters.

Figure XVII.4: Setting the transormation in QGIS

If a map projection cannot be found in the GIS software,
it is typically possible to specify a new map projection.
While in GlobalMapper this means filling in a simple
dialogue box, in other software this is possible using the
WKT format. As an example, let us look at the definition
of the EOV in ArcGIS software:
PROJCS["HD72_EOV",
GEOGCS["GCS_HD72",

DATUM["D_Hungarian_1972",
SPHEROID["GRS_1967",6378160,298.247167427],
TOWGS84[52.17,-71.82,-14.9,0,0,0,0]],

PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]],

PROJECTION["Hotine_Oblique_Mercator_Azimuth_Center"],

PARAMETER["latitude_of_center",47.14439372222222],
PARAMETER["longitude_of_center",19.04857177777778],
PARAMETER["azimuth",90],
PARAMETER["scale_factor",0.99993],
PARAMETER["false_easting",650000],
PARAMETER["false_northing",200000],
UNIT["Meter",1],
AXIS["Y",EAST],

AXIS["X",NORTH]]

It can be seen that ArcGIS derives the datum HD72
in the setting TOWGS84 using the three-parameter form
of Molodenskiy based on the ellipsoid IUGG67. The
mapping is approximated by the Hotine projection
(Sec. XIV.6) with appropriate parametrization. The ad-
vantage of the format WKT is that one can specify the
mapping precisely, but it is also lengthy. In open-source
software, it is possible to use the more compact format
PROJ.4, in which there is fewer possibility to define the
projection precisely, but this does not usually sacrifice the
accuracy required in GIS. An example is the definition of
the EOV in QGIS:
+proj=somerc +lat_0=47.1443937222222
+lon_0=19.0485717777778 +k_0=0.99993 +x_0=650000
+y_0=200000 +ellps=GRS67 +towgs84=52.684,-71.194,-13.975,
-0.312,-0.1063,-0.3729,1.0191 +units=m +no_defs

This time, towgs84 contains seven parameters, so it
uses a Helmert transform.* somerc is an abbreviation for

* A grid shift (Sec. VI.4) could be set with the parameter +nadgrids.
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Swiss Oblique MERCator, i.e. the Rosenmund projection
(Sec. XIV.6). Abbreviations of some projections in PROJ.4:
aea Albers Equal-Area
aeqd Azimuthal EQuiDistant
eqdc EQuiDistant Conic
laea Lambert Azimuthal Equal-Area
lcc Lambert Conformal Conic
longlat No projection, geographic coordinates
tmerc Gauss–Krüger projection

Using our knowledge, georeference a map in the Buda-
pest stereographic system (App. F) as an example! Un-
fortunately, this projection is not supported by QGIS, we
have to teach it. The mapping is similar to the Amersfoort
projection (Sec. XI.4), coded sterea. The reference is the
Bessel ellipsoid, on which the regional datum HD1863
is based, whose placement was calculated by Timár us-
ing both three and seven parameters. We use the latter
parameter set because it gives a more accurate result. The
latitude and longitude of the midpoint Gellérthegy can
be found in the literature, the false easting and northing
are 500 km. From this, the required definition in format
PROJ.4:

+proj=sterea +lat_0=47d29'9.6380" +lon_0=19d3'7.5533"
+k=1 +x_0=500000 +y_0=500000 +ellps=bessel +towgs84=595.75,
121.09,515.50,8.2270,-1.5193,-5.0121,-2.6729 +units=m

+no_defs

By typing this into the QGIS custom projection dia-
logue box, the georeferencing can be done (Fig. XVII.5).
In the example, a map in the Budapest stereographic sys-
tem was transformed into the Pseudo Mercator projection
for comparison to the OpenStreetMap database. Since
the horizontal position of the more accurately measured
inhabited areas is the same on both maps, the slightly
different roads are due to inaccuracies and drawing errors
of the topographic survey. Our georeferencing, therefore,
achieved the desired accuracy.

Figure XVII.5: Comparison of OSM and an old topographic map

XVII.4 Georeferencing

When georeferencing a map, the GIS software will usually
ask you, after selecting the control points, which method
to use to calculate the projected coordinates of the other
points. Unfortunately, the nomenclature of the methods
is not intuitive. Let us denote the pixel coordinates of the
image by x,y and the corresponding projected coordinates
by x′ , y′!

The method called linear in GIS does not resample the
image, but only writes the spatial resolution. This corres-
ponds to the equations x′ = ax+b and y′ = cy+d. This only
gives acceptable results if the map is not rotated, so it is
only good for digital (not for scanned) maps. It requires
two control points. For scanned maps, the map sheet is
usually rotated, so this must be taken into account. This
is what the Helmert transform is for:

x′ = px+ qy + c

y′ = −qx+ py + d

Here, c and d are the translations, and if the angle of
rotation is δ and the scaling factor is s, then p = scosδ
and q = s sinδ. This method also requires at least two
control points. This is a similarity, so it preserves angles
and straight lines.

If, for example, the paper of an old map sheet has a dif-
ferent stretch in the direction of fibres than perpendicular
to it, similarity will not give a good result. A transforma-
tion called linear in mathematics, which is called Polyno-
mial1 in QGIS, and Affine in Global Mapper and ArcGIS,
scales differently depending on the direction. It requires
three control points, is not conformal, but preserves the
parallel straight lines:

x′ = a1x+ a2y + a0
y′ = b1x+ b2y + b0

In aerial photography, it happens that the camera angle
is skew, this is corrected by the projective transform. Glob-
alMapper lacks it, but other programs know it. It also
preserves straight lines, but angles and parallel lines are
lost. Formulae for this method, which requires at least
four control points:

x′ =
a1x+ a2y + a0
c1x+ c2y + 1

y′ =
b1x+ b2y + b0
c1x+ c2y + 1

If the projection of the georeferenced map cannot be de-
termined in any way, it is possible to estimate coordinates
using higher degree polynomials. This will be expanded
in Sec. XVIII.3.
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Lesson eighteen

Transformations between reference systems

XVIII.1 Transform via the reference

frame

We are given a point in a coordinate system. How can we
find the same point in a different coordinate system? It is
inaccurate but quick to read if you have a map with both
systems printed. In multi-zone systems of projections, the
coordinates of the neighbouring zone are often indicated
on the map frame by ticks near the zone boundaries to
speed up the calculation.

The applicability of the more accurate methods de-
pends on whether the two projections use the same or
different reference frames (Fig. XVIII.1). In the case of the
same base surface, reprojection can be performed exactly.
The projected coordinates are transformed back to the
reference frame using the inverse formulae of the projec-
tion, and then the mapped point in the second system is
obtained using the formulae of the other projection. This
method can be applied, for example, between the zones
of the Gauss–Krüger projection. It is also appropriate
between UTM zones and UPS. It is important that the
reference frame is the same, so you cannot convert from
UTM to GK, for example.

For different reference frames, only approximate meth-
ods can be used. In this case, it still makes sense to calcu-
late the coordinates on the reference frame, but the differ-
ence between the two datums must be corrected by a Mo-

lodenskiy or Helmert transform (Sec. VI.4). The paramet-
ers of the transformations can be determined on the basis
of control points whose coordinates and heights above the
ellipsoid are known for both datums. The Molodenskiy

transform, which gives an accuracy of about 5-20m, re-
quires a single control point, whereas the Helmert trans-
form, which typically gives an accuracy of 0·5-2 m, re-
quires at least three such points. Therefore, despite the
lower accuracy, the 3 parameter method of Molodenskiy

is still popular today, and even has an abridged formula
that does not require the calculation of 3D Cartesian
coordinates. Another, less popular method uses a grid
shift raster to store the local differences between the geo-
graphic coordinates.

XVIII.2 Transform with control points

Since it is not possible to convert between two different
datums in a standard way, the question arises whether
the new coordinates x′ , y′ can be estimated directly from
the old coordinates x,y using a pair of functions x′(x,y)
and y′(x,y). Suppose that the new coordinate depends
almost linearly on the old one:

x′ = a+ bx+ cy

Projection I

x,y
Projection II

x′ , y′

Common ref. frame

Φ,Λ

Inverse
projection

Direct
projection

(a) Same reference frame

Projection I

x,y
Projection II

x′ , y′

Trasform with
control points

Read off
from a map

Ref. frame I

Φ,Λ

Ref. frame II

Φ ′ ,Λ′

Inverse
projection

Direct
projection

Abridged
Molodenskiy

Grid shift
transform

3D Cartesian I

X,Y ,Z

3D Cartesian II

X ′ ,Y ′ ,Z ′

Forward
calculation

Reverse
calculation

Helmert

transform

Molodenskiy

transform

(b) Different reference frames

Figure XVIII.1: Possible transforms between coordinate systems
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y′ = d + ex+ f y

We have six unknown parameters denoted by a to f .
Each control point known in both systems yields two
equations according to the relation above. So we need six
equations, or three control points. For now, let us write
down only the three equations for coordinate x′ :

x′1 = a+ bx1 + cy1
x′2 = a+ bx2 + cy2
x′3 = a+ bx3 + cy3

This is a system of linear equations in three variables,
which can be solved by any standard method:

1 x1 y11 x2 y3
1 x3 y3


ab
c

 =

x
′
1
x′2
x′3


From the equations containing y′ , the remaining three

coefficients can be derived in the same way:

1 x1 y11 x2 y3
1 x3 y3


de
f

 =

y
′
1
y′2
y′3


Now, for any new pair x,y, we can estimate the coordin-

ate pair x′ , y′ using the previous parameters, marking the
estimated coordinates with a hat:

x̂′ = a+ bx+ cy

ŷ′ = d + ex+ f y

And what can we do if we have more than three control
points? Then we can take into account the higher degree
terms in the original coordinates x,y. Calculating up to
nth degree terms, we first compute only coordinate x′

(assuming that x′ is a smooth function of x and y):

x′ = a00 + a10x+ a01y + a20x
2 + a11xy + a02y

2 + · · · =

=
n∑
i=0

n−i∑
j=0

aijx
iyj

Expanding the sums, we see that there arem = (n+1)(n+
2)/2 unknown coefficients aij , so we need this number of
control points. So we can use 6 control points for the
second degree, 10 for the third degree and 15 for the
fourth degree approximation. Increasing the number of
powers improves accuracy for a while, but you cannot get
blood out of a turnip: very high-degree polynomials may
bend suddenly, and the measurement errors in our dataset
can be magnified to an unintended extent. In general, it
makes sense to go up till the fourth degree, which alone
can provide a very good accuracy of decimetres over a part

of a country. The solution for coefficients aij is provided
by a linear system of equations:

1 x1 y1 x21 x1y1 . . . yn1
1 x2 y2 x22 x2y2 . . . yn2
1 x3 y3 x23 x3y3 . . . yn3
1 x4 y4 x24 x4y4 . . . yn4
1 x5 y5 x25 x5y5 . . . yn5···
···
···
···

···
· · ·

···
1 xm ym x2m xmym . . . ynm





a00
a10
a01
a20
a11···
a0n


=



x′1
x′2
x′3
x′4
x′5···
x′m


The other coordinate can be described by a similar for-

mula:

y′ = b00 + b10x+ b01y + · · · =
n∑
i=0

n−i∑
j=0

bijx
iyj

The coefficients bij can be obtained from the same con-
trol points by substituting bij for aij and y′i for x′i in the
system of equations. This procedure is called the polyno-
mial transformation.

XVIII.3 The method of least squares

It is rare that we have exactly 3, 6, 10, or 15 control points.
In such cases, we can make some sort of selection, for
example, we can discard the most outlying measurements,
but we may also try to get an average set of parameters
taking all our points into account. Assume that our points
are subject to normally distributed errors!* In this case, the
maximum likelihood parameter set aij is provided by the
method of least squares. Let x′ be the actual coordinate x
in the new system, x̂′ the estimated one!

We want to obtain the estimated values such that the
error of the estimate for ourm number of control points is
minimal. We define the error of the estimate by squaring
the difference between the actual coordinate x′k of the
kth control point and the coordinate x̂′k estimated by the
transformation (the absolute value is not apt because it
is not differentiable), and then summing them for each
point:

m∑
k=1

(
x̂′k − x

′
k

)2
→min

The above expression is minimal if its derivative with
respect to all aij is zero:

�
∑m
k=1

(
x̂′k − x

′
k

)2
�aij

=
m∑
k=1

2
(
x̂′k − x

′
k

) �x̂′k
�aij

= 0

m∑
k=1

x̂′kx
i
ky
j
k =

m∑
k=1

x′kx
i
ky
j
k

m∑
k=1

(a00 + a10xk + a01yk + . . . )xiky
j
k =

m∑
k=1

x′kx
i
ky
j
k

a00
m∑
k=1

xiky
j
k + a10

m∑
k=1

xi+1k y
j
k + a01

m∑
k=1

xiky
j+1
k + · · · =

m∑
k=1

x′kx
i
ky
j
k

* The measurement errors are indeed usually approximately nor-
mally distributed after the systematic errors are removed.
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We have a linear system of equations for aij-s, since i
and j can take any value. The system of equations to be
solved in the form of a matrix equation:

m
∑
xk

∑
yk

∑
x2k

∑
xkyk ...

∑
ynk∑

xk
∑
x2k

∑
xkyk

∑
x
3
k

∑
x2kyk ...

∑
xky

n
k∑

yk
∑
xkyk

∑
y2k

∑
x2kyk

∑
xky
2
k ...

∑
yn+1
k∑

x2k
∑
x
3
k

∑
x2kyk

∑
x4k

∑
x
3
kyk ...

∑
x2ky

n
k∑

xkyk
∑
x2kyk

∑
xky
2
k

∑
x
3
kyk

∑
x2ky
2
k ...

∑
xky

n+1
k··· ··· ··· ··· ··· ··· ···∑

ynk
∑
xky

n
k

∑
yn+1
k

∑
x2ky

n
k

∑
xky

n+1
k ...

∑
y2nk





a00
a10
a01
a20
a11···
a0n


=


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x′k∑
x′kxk∑
x′kyk∑
x′kx
2
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x′kxkyk···∑
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n
k


By writing bij instead of aij and y′k instead of x′k , co-

ordinate y can be estimated in the same way using the
expressions x̂′k in terms of bij . This method slightly im-
proves the achievable accuracy, but the accuracy of the
transformation is greatly degraded in the case of outliers
with erroneous values.

Although often more accurate than traditional datum
transformations, GIS systems do not usually support con-
trol point transforms between projections, but only dur-
ing georeferencing, which is typically implemented using
the least squares method described here, even though
higher degree polynomials would make sense primarily
for conversions between different projections.

In the case of the Helmert transform as described in
Sec. XVII.4, the formulae for x′ and y′ already have com-
mon coefficients, so the least squares minimization for
the two coordinates must be done simultaneously. (Note
that we have two equations for each point, so the four
unknowns require at least two control points.)

m∑
k=1

(
x̂′k − x

′
k

)2
+
(
ŷ′k − y

′
k

)2
→min

Where:

x̂′ = px+ qy + a

ŷ′ = −qx+ py + b

Derived with respect to parameter t ∈ {a,b,p,q}:

�
∑m
k=1

(
x̂′k − x

′
k

)2
+
(
ŷ′k − y

′
k

)2
�t

=
m∑
k=1

2
[(
x̂′k − x

′
k

)�x̂′k
�t

+
(
ŷ′k − y

′
k

)�ŷ′k
�t

]
= 0

From this, substituting each of the four parameters for
t gives four equations:

m∑
k=1

(
pxk + qyk + a− x′k

)
1 = 0

m∑
k=1

(
−qxk + pyk + b − y′k

)
1 = 0

m∑
k=1

(
pxk + qyk + a− x′k

)
xk +

(
−qxk + pyk + b − y′k

)
yk = 0

m∑
k=1

(
pxk + qyk + a− x′k

)
yk +

(
−qxk + pyk + b − y′k

)
(−xk) = 0

Expanding the parentheses and rearranging into a lin-
ear system of equations:

m 0
∑
xk

∑
yk

0 m
∑
yk

∑
−xk∑

xk
∑
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∑
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yk
∑
−xk 0

∑
x2k + y2k



a
b
p
q

 =


∑
x′k∑
y′k∑

x′kxk + y′kyk∑
x′kyk − y

′
kxk


The former transformation has the important advant-

age of being a similarity transform, i.e. it preserves angles,
but it is of little use for a conversion between two dif-
ferent conformal projections because it does not model
the areal distortion that varies from place to place. The
polynomial transformation is flexible for our area, but
it distorts the angles between the two systems. The ad-
vantages of both methods are combined in the complex
polynomial transformation, which is based on considering
the planar coordinates as the real and imaginary parts of a
so-called complex number, i.e. we introduce the notations
z = y+ix and z′ = y′+ix′ , where i2 = −1. From the analysis
of complex numbers, it is known that the conformality
of the transformation implies the differentiability of the
function z′(z), and, vice versa, that differentiable complex
functions are conformal (Sec. XXIX.1). Therefore, a re-
lation between two arbitrary conformal projections can
be established by a differentiable function C→ C, which
can be approximated to any precision by a polynomial:

ẑ′ = a0 + a1z+ a2z
2 + a3z

3 + · · · =
n∑
i=0

aiz
i

If we require
∑

(ẑ′k − z
′
k)
2 to be minimal for our control

points, we obtain the linear system of equations below,
which requires at least n+ 1 control points for an nth de-
gree approximation. Since both the unknowns and the
coefficients are complex numbers, it is important to im-
plement the algorithm in an environment that is capable
of dealing with complex numbers, such as the Python
programming language.
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a2···
an
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
In the practice of GIS, coordinates are most often

transformed back to the reference frame, then into 3D
Cartesian coordinates, and finally from this the 3D
Cartesian coordinates are estimated for the other datum.
A major difficulty of this method is that it requires the
ellipsoidal height of the control points. The simplest is
the Molodenskiy transform, which is, in fact, just a trans-
lation: x

′

y′

z′

 =

∆x∆y
∆z

+

xy
z


From the equation above, it follows directly that the

value of the parameters ∆x,∆y,∆z for one control point is
the difference between the coordinates of the point in the
two systems. By the method of least squares, the average
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XVIII. Transformations between reference systems

of these coordinate differences becomes the value of the
parameters for several control points.

The more complex Helmert transform in three dimen-
sions (sometimes referred to as Burša–Wolf transform)
also takes into account three rotation parameters and one
scaling parameter. Since the angles of rotation σx,σy ,σz
are small, we use the approximations sinσ ≈ �σ , cosσ ≈ 1,
and σiσj ≈ 0. Then the product of the rotation matrices
is:1 0 0
0 cosσx sinσx
0 −sinσx cosσx



cosσy 0 −sinσy
0 1 0

sinσy 0 cosσy


×

 cosσz sinσz 0
−sinσz cosσz 0
0 0 1

 ≈
1 0 0
0 1 �σx
0 −�σx 1



1 0 −�σy
0 1 0�σy 0 1


 1 �σz 0
−�σz 1 0
0 0 1


≈

1 0 0
0 1 �σx
0 −�σx 1



1 �σz −�σy
−�σz 1 0�σy 0 1

 ≈

1 �σz −�σy
−�σz 1 �σx�σy −�σx 1


The scaling then is a multiplication by a scalar, while

the translation adds the corresponding vector:x
′

y′

z′

 =

∆x∆y
∆z

+ (1+ s)


1 �σz −�σy
−�σz 1 �σx�σy −�σx 1


xy
z


It can be seen that for the determination of the seven

unknowns, we have three equations for each control point,
but even for three control points the system of equa-
tions becomes overdetermined, so the calculation of the
parameters is only possible by estimation, e.g. by the
method of least squares. After substituting a = (1+ s)�σx,

b = (1+ s)�σy , c = (1+ s)�σz, and d = 1+ s and avoiding the
very lengthy derivation:


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
Tab. XVIII.1 shows the parameter set of transforma-

tions in Hungary from some datums to the WGS84 one.
Be careful, because in this lecture notes the coordinate
frame has been rotated, but some GIS software rotate the
position vector of the point instead. In such a case, the
signs of the rotations must be reversed! The inverse trans-
formation can be approximated well by inverting the sign
of each parameter.

Table XVIII.1: Datum parameters for Hungary

Datum ∆x (m) ∆y (m) ∆z (m) σx (′′) σy (′′) σz (′′) s (ppm)

HD72 52·684 −71·194 −13·975 0·3120 0·1063 0·3729 1·0191
S42/83 −5·38 −91·75 −86·23 −0·988 −0·700 0·652 2·273
S42/58 17·20 −84·03 −60·97 −1·085 −0·682 0·473 −3·185
RDN1940 566·54 108·25 487·93 −2·2867 −2·6409 1·5194 −0·7365
HD1863 595·75 121·09 515·50 −8·2260 1·5193 5·0121 −2·6729
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Lesson nineteen

Theory of non-conical projections

XIX.1 The shape of the graticule

Recall from Sec. VI.6 that conical projections satisfy all
the following properties:

• The mapped meridians are parallel or concurrent
straight lines.

• Parallels are mapped to concentric circles, arcs of
circles or parallel straight lines.

• Mapped graticule lines are perpendicular every-
where.

• Meridians divide the mapped parallels evenly.
If at least one of the conditions in the list above is not

met, a non-conical projection is obtained. These projections
are divided into subgroups according to the mapped im-
age of the graticule. In contrast to conical projections, in
non-conical projections, we do not always require the con-
centricity of the mapped parallels. They must only satisfy
our general expectation that map projections are bijective
mappings. It only follows that the mapped parallels must
not intersect. For this reason, if our projection still has
concentric parallels, we consider them special, and use
the prefix pseudo- for their families. Mappings with non-
concentric circular parallels will be denoted by the prefix
poly- (Fig. XIX.1):

• If the mapped parallels are complete concentric
circles, our projection is pseudoazimuthal. A polyazi-
muthal mapping is similar but its parallels are not
concentric.

• Among pseudoconic projections, the parallels are
mapped into concentric arcs of circles. Projections
with non-concentric parallels are called polyconic,
but some of them may also be grouped as pseudopoly-
conic (the distinction between these two groups is
discussed in Sec. XXVI.1).

• If the mapped parallels are parallel straight lines,
then we speak of a pseudocylindrical mapping.

• Projections that do not belong to any of the above
groups are called miscellaneous projections.

Since the perpendicularity of the mapped graticule is
not required among non-conical projections, mappings
with perpendicular graticule are identified as rectangular.
This corresponds to the statement cotϑ = 0 and can be
easily checked using the projection formulae (Sec. VII.2).
As an example, the polyazimuthal projection shown in
Fig. XIX.1 is also rectangular. Not all families of non-
conical projections include rectangular mappings.

It is very important to note, in order to avoid ambigu-
ities, that our classification is strictly for projections in
the normal aspect. Let us look at Fig. XIX.2. Although
projections (a) and (c) seem to be non-conical maps, they
are in fact rotated aspects of conical projections (b) and
(d).

Parallels Concentric Non-concentric

Circles

Pseudoazimuthal Polyazimuthal

Arcs

Pseudoconic (Pseudo)polyconic

Straight —

Pseudocylindrical

Other

Miscellaneous

Figure XIX.1: Classification of non-conical projections according
to the shape of the graticule

(a) Is this a pseudocylindrical map? (b) Rather transverse orthographic!

(c) Is this a polyazimuthal map? (d) Rather oblique stereographic!

Figure XIX.2: Conical or non-conical?
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XIX. Theory of non-conical projections

λ′p = 0° 0° < λ′p < 90° λ′p = 90°

ϕ0 = 90°

Normal Normal Normal

0° < ϕ0 < 90°

Simple oblique Plagal Skew

ϕ0 = 0°

First transverse Oblique transverse Second transverse

Figure XIX.3: The Mollweide projection in different aspects

XIX.2 Seven aspects of a non-

conical projection

This brings us to the question of the graticule rotation.
Fig. XIX.3 shows the Mollweide projection using differ-
ent rotations. The longitude of the metapole λ0 is uniform
because it does not affect the image of the graticule. For
conical projections, it is always assumed that the prime
metameridian passes through one of the poles. We could
use this simplification because conical projections are ro-
tationally symmetric, changing the prime metameridian
only rotates or shifts the image of the grid. In contrast,
non-conical projections behave quite differently with re-
spect to the rotation of the graticule. Canadian geodesist
Wray published these findings in 1974.*

No special phenomenon is observed in the normal as-
pect of the projection. Although the prime metameridian
has been changed, the mapped graticule has not. We
would expect to see the same when the metapole is ro-
tated to the Equator. But here they do the dirty on us!
The graticule is significantly altered by the different place-
ment of the prime metameridian. Therefore, in the case
ϕ0 = 0°, we distinguish between three aspects. In the
first transverse one, the one of the poles is located on the
vertical axis of symmetry; in the second transverse one,

* The areas of more favourable distortion can be rotated to arbitrary
areas in this way, just like with conical projections. Yet in practice,
we almost never encounter such a projection. One reason for this is
that non-conical projections give a rather unusual image when rotated.
Unfortunately, another important aspect is that the literature today
still often misinterprets the aspects of projections. Instead of rotating
the graticule, they are typically defined by the placement of a cone
or cylinder compared to a sphere, although this definition is already
unintelligible in the context of non-perspective conical projections. How
do we rotate the cylinder in Mercator projection if no cylinder is used
in the derivation? This is precisely why, with this concept, the rotation of
non-conical projections cannot be explained intuitively. Here is another
reason why we defined cylindrical projections not by projecting onto a
cylinder, but by the shape of mapped parallels.

the two poles are equally far away from the axis of sym-
metry. In the oblique transverse aspect, the projection has
no vertical axis of symmetry.

We can describe this formally by subtracting a prime
metalongitude λ′p from the metalongitude λ′ in the pro-
jection, and thus our prime metameridian encloses this
spherical angle λ′p with the metameridian through the
geographic pole (Fig. XIX.4).† In the first case λ′p = 0°, in
the second case λ′p = ±90°, while in the general case it is
any other value.

Equator

90
°−
ϕ 90°−

ϕ
0Prime metameridian

M
et

ae
qu

at
or

λ′p
λ′

90°−ϕ
′

λ0 −λ

North Pole

P

Metapole

Figure XIX.4: Prime metameridian in plagal aspect

We see similar results when the metapole is placed
neither on the Equator nor at the pole, but somewhere
else. In this case, if one of the poles is on the vertical axis
of symmetry, then our aspect is simple oblique (λ′p = 0°), if
λ′p = ±90°, then it is skew (some projections have central
symmetry in this aspect). If neither of these special cases

† What we are really saying here is that any arbitrary spatial rotation
of any object can be described by three angles. Here, the spatial rotation
of the graticule is given by the coordinates ϕ0 and λ0 of the metapole
and the prime metameridian λ′p
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XIX. Theory of non-conical projections

is fulfilled, then we speak of a plagal aspect based on the
Greek word plagios, which means oblique.

Returning to Fig. XIX.2, we find an interesting problem.
For example, if we forget that projection (a) is a transverse
orthographic one, we might easily think that we are deal-
ing with a normal aspect pseudocylindrical projection.
Considering the mapping (a) as a map projection in its
own right, its first transverse aspect would just reproduce
the graticule (b). Now then, can (a) be considered as a
normal and (b) as a first transverse aspect of a pseudocyl-
indrical map? Not at all, since they are rather the aspects
of an azimuthal map. Wray gave two rules of thumb for
such cases:

• The normal aspect of a projection is always the one,
in which the projection formulae can be reduced to
a simpler form. The mapping (b) can be defined by
the equation ϱ = Rsinδ, while mapping (a) requires
longer expressions.

• Among the possible aspects of a projection, the one,
in which the mapped graticule has the largest de-
gree of symmetry, is always considered normal. The
graticule (a) is symmetric only about the vertical and
horizontal axes, while projection (b) has complete
rotational symmetry.

Of course, these rules of thumb do not always give
clear results. For example, none of the normal, first
and second transverse aspects of the Littrow projection
(Sec. XXVII.1) have simpler formulae and none of them
exhibit greater symmetry. In such a case, we are forced to
consider the first described form of the projection as the
normal aspect.

XIX.3 Map distortions

The distortions of non-conical projections are essentially
determined by whether their graticule is rectangular.
Since all conformal projections are also rectangular, con-
formal mappings are found only among rectangular pro-
jections. Thus, the equations cotϑ = 0 and h = k must
be satisfied simultaneously to speak of conformal projec-
tions. For this reason, for a long time only a few conformal
maps were found among non-conical projections. How-
ever, among miscellaneous projections, a clever modific-
ation of the conformality condition leads to a variety of
conformal mappings (see Sec. XXIX.1). Nevertheless, it
is safe to say that conformal non-conical projections are
almost never encountered in practice.

In the case of rectangular projections, sinϑ = 1, so the
formula for areal scale is still p = hk.* However, in other
non-conical projections, the graticule lines are not prin-
cipal directions of the mapping, so the maximal and min-
imal linear scales a and b do not correspond to the linear
scale along the graticule lines. In this case, we have to
use the formula p = ab = hk sinϑ. This is not much more
complicated than the one of conical projections, so it is
not difficult to find equal-area projections.

The linear scales of non-conical projections can be com-
puted using the general formulae of Tissot’s distortion

* Map projections that are rectangular and equal-area at the same
time are called Euler projections.

theory. Among aphylactic conical projections, the map-
pings equidistant in meridians showed a balance in their
angular and areal distortions, while among non-conical
projections we find that we can balance the two types of
distortion well in mappings with an equidistant central
meridian.

XIX.4 Application of non-conical

projections

The oldest known non-conical mapping is the Ptolemy II
projection, which is a pseudoconic projection. He created
it to achieve lower distortion than in his conic one. Since
then, many such mappings have been created. Many of
them are more favourable than the conic projections, but
only if they are used wisely.

For areas of extent less than 3500 km, it is easy to find
conical projections, in which distortions are not detect-
able with the naked eye. In such cases, there is no point
in bothering with the more complex non-conical projec-
tions unless our goal is engineering precision. Since in
small-scale maps of large areas, the ∼ 20 km difference
between the sphere and the ellipsoid of revolution is typ-
ically below the cartographic accuracy of the map, the
projections will be derived for a sphere as the reference
frame. Only on old topographic maps should you expect
to find a projection with a reference frame as an ellipsoid.

Note here that in the case where there is no ellipsoidal
version of a mapping, the vast majority of GIS software
simply drop the ellipsoidal coordinates into the spherical
formulae; exactly as we have seen with the Pseudo Mer-
cator. QGIS is at the forefront of the sloppy handling of
map projections also in this respect.

If we had done so now, specific distortions (e.g. con-
formality or equivalency) would have been lost, with no-
ticeable errors at larger scales. On a world map, of course,
this is not a problem. ArcGIS can be made to apply the cor-
rect auxiliary sphere (e.g. the authalic sphere for an equal-
area mapping) to some projections in hidden, barely un-
derstandable menu items, and this is a fair solution. Using
an auxiliary sphere, you can apply a non-conical projec-
tion at a larger scale, but how much sense it makes is
another question, since non-conical projections are rather
applied at very small scales.

The distortions of conical projections are usually unac-
ceptable for areas larger than a hemisphere. In such cases
(unless the theme requires, for example, the elimination
of meridian convergence, or you insist on a rectangu-
lar map frame), choose a non-conical projection! For a
hemisphere (because of its circular shape), azimuthal pro-
jections are the best, and for continents and oceans, both
conical and non-conical projections are suitable. For smal-
ler areas, experience has shown that many non-conical
mappings, although much better than traditional conical
mappings, do not provide breakthrough improvements.
Take care, as the correct choice of projections requires a
great deal of expertise. It is not difficult to fall into the
mistake of choosing a mapping with a less favourable dis-
tortion pattern than the conical projection recommended
for that area.
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XIX. Theory of non-conical projections

When choosing a map projection, consider not only the
theme of the map but also the target audience, and this
is especially true for non-conical projections! A reader
with better abstraction skills will have no difficulty in
reading a more complex graticule, but printing a plagal
aspect non-conical projection in a school atlas would be
a bad prank. For a map intended for younger readers, or
even for purely aesthetic reasons, consider using rectan-
gular projections, which resemble the spherical graticule
with its right angles. Note that the main advantage of
rectangular projections is lost when the aspect is rotated!

Experience has shown that the interpretation of the
pole-line is straightforward only for skilled readers.
Avoid the use of flat-polar maps on educational world
maps, but even for press maps, think five times before
choosing a flat-polar projection for your world map! Flat-
polar projections with more favourable distortions are
acceptable for geographic atlases or thematic maps, and
also feel free to use them on maps where the pole-line is
outside the map frame.

Never use a flat-polar projection in a rotated aspect

if the pole-line appears within the map frame. And if
the pole-line is curved, absolutely do not! I leave it to
the reader’s discretion to explain the reason based on
Fig. XIX.5:

Figure XIX.5: It has favourable distortions at most areas, yet not
the best choice
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Lesson twenty

Earlier pseudocylindrical maps

XX.1 Distortions of

pseudocylindricals

The projections, in which the images of the parallels are
parallel straight lines, are called pseudocylindrical projec-
tions. In addition, we often expect the projection to be
symmetric about the Equator. This already shows that
this family of projections is used to represent large areas
(e.g. the entire surface of the Earth, the Pacific Ocean)
symmetric about the Equator. Pseudocylindrical projec-
tions map the spherical zones of the Earth onto horizontal
bands, making them well suited for representing themat-
ics depending on latitude (e.g. climate, vegetation cover).
Pseudocylindrical mappings are further divided into the
families of pseudocylindricals with sinusoidal, elliptical,
circular, straight and other meridians, based on their char-
acteristic shape of mapped meridians.

The vertical coordinate does not depend on the longit-
ude and is of the form y(ϕ), or in other words �y/�λ = 0.
Due to symmetry, y is an odd, strictly increasing function.
The horizontal coordinate depends on both parameters,
is in the form of x(ϕ,λ), it is an even function of ϕ and an
odd, strictly increasing function of λ.

Compared to the general formulae, k and cotϑ can be
simplified by substituting �y/�λ = 0.

k =

√(
�x
�λ

)2
+
(
�y
�λ

)2
Rcosϕ

=
1

Rcosϕ
�x

�λ

cotϑ =
�x
�ϕ

�x
�λ + �y

�ϕ
�y
�λ

�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

=
�x

�ϕ

/
dy
dϕ

In rectangular projections, cotϑ = 0, i.e. �x/�ϕ = 0.
However, this would imply that the mapped meridians
are vertical lines, so we would get into the family of cyl-
indrical projections. Finally, we can state that there is no
rectangular pseudocylindrical, and hence conformal ones do
not exist either.

Let us recall the following formula using hypnosis from
Sec. VII.3 and substitute �y/�λ = 0 into it!

p =

�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

R2 cosϕ
=

1
R2 cosϕ

dy
dϕ

�x

�λ

We know that p = hk sinϑ. Let us substitute the previ-
ously obtained formulae for k and p into this to express
the yet unknown h:

1
R2 cosϕ

dy
dϕ

�x

�λ
= h

1
Rcosϕ

�x

�λ
sinϑ

h =
dy
dϕ

1
Rsinϑ

Is there an equal-area pseudocyindrical mapping? Let
us examine the equation p = 1!

1
R2 cosϕ

dy
dϕ

�x

�λ
= 1

�x

�λ
= R2

cosϕ
dy
dϕ

Since on the right-hand side of the equation there are
only functions of ϕ, it is clear that the derivative in the
left-hand side is also independent of λ. If the derivative of
x is constant with respect to λ, then x is a linear function
of λ. To make practical use of it, we may say that there exist
equal-area pseudocylindrical projections, but the parallels
of such mappings are always evenly divided by the mapped
meridians (the parallels have constant scale).

XX.2 Globular projections

With the great geographical discoveries, the world opened
up and soon the first world atlases were published. The
demand for world maps was immediate. At that time,
mapmakers were even cleverer than they are today: they
knew that the Mercator projection was only suitable for
navigational maps, so they sought other projections. The
first non-conical projections showed the Earth divided
into two hemispheres side-by-side in two maps. The
hemisphere is circular when viewed from afar, so it is
obvious to represent the map in a circular frame. Non-
conical projections that represent the hemisphere in a
circular contour are called globular projections.

The origin of the first globular projections is a matter
of debate, but some sources claim that Arabic scholars
had globular projections before Europeans as early as
around 1000 AD. At the dawn of the modern age, atlas
makers tried to lower distortions with newer and newer
graticule networks, of which there are countless variants.
The parallels of some globular projections are mapped
to arcs of circles, so in the modern classification they are
more properly classified as pseudopolyconic projections
(see Sec. XXVII.2). The globular projections have by now
been superseded by transverse azimuthal projections of
more favourable distortions pattens for hemisphere maps.

The two most common globular projections are named
after Apian. In addition to the circular frame, they both
have horizontal straight lines for parallels and equidistant
Equator and central meridian. The first projection is prob-
ably the work of Vespucci, who identified America as a
continent in the early 16th century. It uses circular meridi-
ans. The exact origin of the second projection is disputed,
but it is likely not the development of Apian. It maps
meridians to semi-ellipses.
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XX. Earlier pseudocylindrical maps

The mapped meridians are therefore arcs of circles in
the Apian I projection. Their centres are located on axis x
due to symmetry. The equation of a circle centred at (d,0)
(Fig. XX.1) is:

(x − d)2 + y2 = ϱ2

Since the Equator is equidistant, we must have x = R�λ
on the horizontal axis (i.e., substituting y = 0):(

R�λ− d)2 = ϱ2

d = R�λ− ϱ
Because of the equidistant central meridian, the

mapped image of the North Pole is at distance Rπ/2 from
the mapped Equator. All arcs pass through the point of
the Pole, so the equations of the circles must hold true for
the substitution x = 0 and y = Rπ/2:

(−d)2 +
(
R
π

2

)2
= ϱ2(

ϱ −R�λ)2 +
(
R
π

2

)2
− ϱ2 = 0

R2�λ2 − 2R�λϱ+R2
(
π

2

)2
= 0

ϱ = R
�λ2 +

(
π
2

)2
2�λ

From the equidistant central meridian:

y = R�ϕ
Substituting this and the equation d = R�λ− ϱ back into

the equation of the circle:(
x −R�λ+ ϱ

)2
+ (R�ϕ)2 = ϱ2

x −R�λ+ ϱ = ±
√
ϱ2 −R2�ϕ2

x = R�λ− ϱ ±√ϱ2 −R2�ϕ2
The symmetry of the projection is guaranteed if the

sign ± is positive in the Eastern Hemisphere and negative
in the Western Hemisphere. By calculating h, it can be
concluded that the scale along parallels is not constant
(Fig. XX.3), so the projection is certainly not equal-area.

x

y

R�λ
R�ϕ

Rπ/2ϱ
−d

(a) Projection I

x

y

Rπ
/2

R�λ
R�ϕ

Rπ/2

χ

(b) Projection II

Figure XX.1: The construction of the Apian projections

The meridians of the Apian II projection are mapped
to semi-ellipses, their semi-axes fall on the axes x and

y. The vertical semi-axis of the ellipses is Rπ/2 due to
the equidistant central meridian, and their horizontal
semi-axis is R�λ due to the equidistant Equator. Thus, the
equation of the ellipses is:

x2(
R�λ)2 +

y2(
Rπ
2

)2 = 1

The central meridian is equidistant:

y = R�ϕ
Substituting this back:

x2

R2�λ2 = 1−
R2�ϕ2
R2

(
π
2

)2
x = R�λ√1− (2�ϕ

π

)2
Let us examine the distortions of the projection.

k =
1

Rcosϕ
�x

�λ
=
1

cosϕ

√
1−

(
2�ϕ
π

)2
The parallels have therefore constant scale. Is the pro-

jection equal-area?

h =
dy
dϕ

1
Rsinϑ

=
1

sinϑ

cotϑ =
�x

�ϕ

/
dy
dϕ

=
−4�λ�ϕ

π2
√
1−

(
2�ϕ
π

)2
p = hk sinϑ , 1, so the projection is aphylactic. As can

be seen in Fig. XX.2, the projection is pointed-polar, but
its pole does not have that cusped shape common to con-
ical projections, but meridians have a more aesthetically
pleasing smooth shape.

Globular projections are no longer used in modern car-
tography, but there are many derivatives of the Apian II
projection, which are still popular today. These all have
elliptic meridians, and we will get to know them during
the module. For easier calculation of these derivative pro-
jections, we use a parameter χ instead of the latitude ϕ,
which is defined by the equation sinχ = 2�ϕ/π as shown in
Fig. XX.1. The projection formulae then take the following
simpler form:

x = R�λ√1− sin2χ = R�λcosχ

y = R
π

2
sinχ

XX.3 Extended globular projections

Of course, there was also a demand for a continuous rep-
resentation of the entire surface of the globe in early
world atlases. Although the Apian II projection is de-
signed to represent only the hemisphere, the formulae of
the projection can be extended to the entire surface of
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XX. Earlier pseudocylindrical maps

Figure XX.2: Apian II projection (globular projection is in red)

the sphere in unchanged form. Thus we obtain a projec-
tion representing the Earth in an elliptical frame, with
the hemisphere in the middle being the original globular
projection (Fig. XX.2).

The formulae of the Apian I projection could also be
applied to the full globe, but the resulting projection
would be unreasonably distorted. The 16th century Italian
cartographer Agnese therefore extended the projection to
longitudes |λ| > 90° with circles of radius Rπ/2 , which is
the same size as the original circular frame. The Equator
is still equidistant. The formulae of the projection are
the same as for the Apian I projection, except that for
|λ| > 90°, ϱ = ±Rπ/2 is substituted.

This projection can be identified if we observe that,
although it is flat-polar, the hemisphere in the centre
of the map (which is in fact in the Apian I projection)
is still pointed-polar (Fig. XX.3). This projection was
erroneously attributed to Ortelius, who applied it in his
world atlas.

Figure XX.3: Ortelius projection (Apian I projection is in red)

XX.4 Sinusoidal projection

Create a pseudocylindrical projection that is equidistant
in central meridian and in all parallels. From the
equidistant central meridian, it follows that:

y = R�ϕ
On the other hand, k = 1:

1
Rcosϕ

�x

�λ
= 1U

dx = R
U

cosϕdλ

x = R�λcosϕ + f (ϕ)

The symmetry about the central meridian can only be
satisfied if the constant of integration f (ϕ) is 0, so we can
safely omit it. What kind of projection is this, how do the
distortions evolve?

h =
dy
dϕ

1
Rsinϑ

=
1

sinϑ

cotϑ =
�x

�ϕ

/
dy
dϕ

= −�λsinϕ

And now we are very happy, because hk sinϑ = 1, so
the first equal-area projection is found. The distortions
are favourable at the Equator and at the central meridian
(h = k = 1 and cotϑ = 0). Farther away from them, cotϑ
starts to increase very rapidly, causing catastrophic angu-
lar distortions (Fig. XX.4). The lesson is that if we try to
completely eliminate too many distortions at once, one of
the ignored distortion features will always take a bloody
revenge.

Figure XX.4: Sinusoidal projection

This mapping was devised by the French cartographer
Cossin at the end of the 16th century, but fate is cruel and
it is sometimes called as Mercator–Sanson–Flamsteed

projection* (or possibly by choosing any two of the former
names). Since its meridians are affine images of a sine
wave, its most frequently used name is the sinusoidal
projection.

Because of its locally favourable distortions, it is rarely
used to represent continents at low latitudes in an equal-
area form. Its isocols are reminiscent of hyperbolae, so
it would be good for cross-shaped areas, just tell me one
such area! Its practical significance is that it will be the
base of modern sinusoidal projections, which will have a
similar shape of meridians.

Since this projection has also been used for regional
maps, an ellipsoidal variant also exists. It is defined un-
der the same conditions as the spherical one. From the
equidistant central meridian:

y =

ΦU
0

M(Φ)dΦ

From the equidistant parallels:

x =N (Φ)�ΛcosΦ

The ellipsoidal variant also turns out to be equal-area.
*

Mercator, by the way, has nothing whatsoever to do with this
projection; it is attributed to him because Hondius depicted the Earth
in this projection in the world atlas he bought from Mercator and
continued to sell as the Mercator Atlas.
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Lesson twenty-one

Aphylactic pseudocylindrical projections

XXI.1 Loximuthal projection

Sometimes the map’s theme requires interesting distor-
tion patterns. In 1935, the German cartographer Siemon

found a solution to the problem of showing the length
and direction of shipping routes from a particular port. If
the ships had travelled along orthodromes, the azimuthal
equidistant projection would have been correct in oblique
aspect. Siemon was looking for a projection with similar
properties, but for loxodromes. Azimuthal projections
are called so because the orthodromes (metameridians)
starting from the metapole enclose their true angles on
the map. Since this projection is azimuthal with respect
to the loxodromes starting from the origin, the American
cartographer Tobler called it the loximutal projection.

The port must be located on the meridian λs = 0°. This
is not a constraint, because the central meridian of a map-
ping can always be changed arbitrarily. The latitude of
the starting point is ϕs. The azimuth α and the length s
of rhumb lines are taken from Sec. III.3:

tanα =
�λ− �λs

lntan
(
45° + ϕ

2

)
− lntan

(
45° + ϕs

2

)
s = R

�ϕ − �ϕs
cosα

This gives the projection formulae in polar coordinates.
Converted to Cartesian coordinates:

y = scosα = R
�ϕ − �ϕs
cosα

cosα = R(�ϕ − �ϕs)
From this, it can be seen that the resulting projection

belongs to the family of pseudocylindrical mappings. The
other coordinate:

x = s sinα = R
�ϕ − �ϕs
cosα

sinα = R(�ϕ − �ϕs) tanα

= R
�λ(�ϕ − �ϕs)

lntan
(
45° + ϕ

2

)
− lntan

(
45° + ϕs

2

)
This formula leads to a division by zero if ϕ = ϕs.

In this case, however, the loxodrome connecting the
two points is a parallel of azimuth 90° and length x =
R�λcosϕs. The projection leads to a division by infinity
at the two poles, so x→ 0, i.e. the projection is pointed-
polar even though it does not appear to be.

The horizontal coordinate is a linear function of λ,
so the parallels of the projection have constant scale.
The central meridian and the latitude ϕs are loxodromes
passing through the origin, so they are also equidistant.
If ϕs , 0, the projection image is asymmetric about the
Equator (Fig. XXI.1). This projection is aphylactic because
hk sinϑ , 1.

Figure XXI.1: Loximuthal projection for Lisbon

XXI.2 Blended projections

We have learned through our explorations in the field of
map projections that every mapping has its weak points.
The sinusoidal projection, for example, gives a very good
representation of the equatorial region, but higher lat-
itudes suffer from angular distortion as if the map had
just been chewed by a dog. This area is stretched in the
north-south direction. On the other hand, the Plate Car-
rée projection is also favourable around the Equator, and
at high latitudes it dilates the map content in the east-west
direction. If we could somehow make a baby for these
two projections, we would expect that at high latitudes
the distortions of the two projections would nicely cancel
each other out.

A blended projection of mappings A and B is a mapping
developed by the average of the two projections and a
rescaling c:

x = c
xA + xB
2

y = c
yA + yB
2

Blended projections may retain many properties of the
original projections. The mapped graticule resembles
both initial projections. If the two projections had a com-
mon equidistant line, it will have a constant scale in the
new projection (equidistant if c = 1). The blended projec-
tion of two conformal maps is conformal. The blended
projection, however, does not preserve the equal-area
property of the initial projections, so an equal-area blen-
ded projection may be produced using the trick described
in Sec. XXII.1. The idea of the blended projections is at-
tributed to Eckert, who produced six projections by this
method in 1906.

Let us blend the sinusoidal and the Plate Carrée projec-
tion.

x = c
R�λcosϕ +R�λ

2
= cR

�λ
2

(1+ cosϕ)
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XXI. Aphylactic pseudocylindrical projections

y = c
R�ϕ +R�ϕ
2

= cR�ϕ
By substituting λ = ±180° into the formula for x, we see

that the length of the pole-line (cRπ) is half the length of
the Equator (2cRπ). Substituting ϕ = ±90° into the equa-
tion for y shows that the length of the central meridian
(cRπ) is also half the length of the Equator.

Choose the constant c such that the total area of the pro-
jection equals the surface of the sphere. Such mappings
are not equal-area, but they are expected to reduce areal
distortions. The area of the map may be decomposed into
a square of side cRπ and two sinusoids of base cRπ and
height cRπ/2. The area of a sinusoid of height H and base
B:

BU
0

H sin
πx
B

dx = −HB
π

cos
πB
B

+
HB
π

cos
0π
B

=
2HB
π

So the area of the square is c2R2π2, the area of the
sinusoids is c2R2π. Since the sum of the three areas is
equal to the surface area 4R2π of the sphere:

c2R2π2 + 2c2R2π = 4R2π

c =
2

√
π+ 2

The distortions are:

h =
dy
dϕ

1
Rsinϑ

=
c

sinϑ

k =
1

Rcosϕ
�x

�λ
=
c
2
1+ cosϕ

cosϕ

cotϑ =
�x

�ϕ

/
dy
dϕ

= −
�λ
2

sinϕ

This mapping is called the Eckert V projection, it is
aphylactic (Fig. XXI.2). In German speaking lands, it is
sometimes used as a projection on world maps.

The equal total area of the blended projection and the
surface of the sphere can be ensured not only by rescaling.
If both original mappings have correct total area, their
blended map will also have this total area, so we do not
have to lose the equidistancy of the central meridian be-
cause of the rescaling. This is the basic idea behind the

Winkel I projection. The sinusoidal projection is equal-
area, so its total area is guaranteed to be correct. Instead
of a Plate Carrée projection, let us choose an equirectan-
gular mapping that has correct total area.

The frame of the equirectangular projection is a rect-
angle of height Rπ and width 2Rπcosϕs. Its total area is
equal to the surface of the sphere if:

2R2π2 cosϕs = 4R2π

cosϕs =
2
π

ϕs ≈ ±50°27′ 35′′

Thus, the projection formulae are obtained as the aver-
age of the sinusoidal and the equirectangular (with stand-
ard parallels ±ϕs. The length of the pole-line is ca. one
third (exactly 1/π times) the length of the Equator.

The Eckert III projection is obtained by blending the
Apian II and the Plate Carrée projection, then rescaled in
the usual way to make its total area correct:

x = c
R�λcosχ+R�λ

2
= cR

�λ
2

(1+ cosχ)

y = c
R�ϕ +R�ϕ
2

= cR�ϕ = cR
π

2
sinχ

The length of both the central meridian and the pole-
line (cRπ) is half the length of the Equator. The mapped
bounding meridians are semicircles (Fig. XXI.3). The area
of the map can thus be divided into a square of side cRπ
and two semicircles of radius cRπ/2. Their summed area
is 4R2π for the purpose of correct total area:

c2R2π2 +
c2R2π2

4
π = 4R2π

c =

√
4

π+ π2

4

=
4√

4π+π2

Those awkward distortions again:

h =
dy
dϕ

1
Rsinϑ

=
c

sinϑ

k =
1

Rcosϕ
�x

�λ
=
c
2
1+ cosχ

cosϕ

cotϑ =
�x

�ϕ

/
dy
dϕ

=
−c�λ2 sinχ dχ

dϕ

cπ2 cosχ dχ
dϕ

= −
�λ
π

tanχ

(a) Eckert V projection (b) Winkel I projection

Figure XXI.2: Blended projections with sinusoidal meridians
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XXI. Aphylactic pseudocylindrical projections

(a) Eckert III projection (b) Winkel II projection

Figure XXI.3: Blended projections with elliptical meridians

On world maps created in Europe, we may see this
aphylactic projection. Since in the Northern Hemisphere
χ ≤ ϕ, the linear scales are slightly more favourable com-
pared to the Eckert V projection. however, at the pole,
the angular distortions get out of hand, as can be seen
from the limits k → ∞ and cotϑ → ∞. Because of its
pleasing shape, it is recommended if high latitudes are
less important for the map’s theme.

Again, the Winkel II projection blends the Apian II
projection and the previously calculated equirectangular
mapping of correct total area, so its pole-line is shorter.
It is not known because of its complexity, although it has
more favourable angular distortions than the Eckert III
projection.

XXI.3 Polyhedric projection

Divide the ellipsoid into 1° wide geographic quad-
rangles, then map each geographic quadrangle into
planar trapezia using a pseudocylindrical mapping whose
two bounding parallel circles and central meridian are
equidistant, and maps all meridians to straight lines. Sim-
ilar pseudocylindrical projections with straight meridians
were popular at the dawn of the modern era (for a broader
view see App. J). The resulting sections have different
sizes in each spherical zone, so they cannot be mosaicked
together in the plane, but the sheets can be folded into a
polyhedron resembling a disco ball, hence this projection
is called the polyhedric projection.

x

y

Φ2
Λ1 Λ2

Φ1

Λ0

Φ

Λ

q1

q

q2

y2

y

Figure XXI.4: Construction of the polyhedric projection

From the equidistant central meridian:

y =

ΦU
Φ1

M(Φ)dΦ

From the equidistant bounding parallels, the half bases
of the trapezium:

q1,2 =N
(
Φ1,2

)
cosΦ1,2

�Λ2 −�Λ1
2

From the legs of the two similar right triangles, as
shown in Fig. XXI.4:

y2
q1 − q2

=
y

q1 − q

q =
q2y + q1(y2 − y)

y2

Finally, the meridians divide the mapped parallel of
length q proportionally:

x = q
�Λ−�Λ0�Λ2−�Λ1
2

=
(�Λ−�Λ0)N (Φ2)cosΦ2

TΦ
Φ1
M(Φ)dΦ+N (Φ1)cosΦ1

TΦ2
Φ
M(Φ)dΦTΦ2

Φ1
M(Φ)dΦ

This projection, suggested by the Prussian military of-
ficer Lichtenstern, was used in many European countries
(e.g. Germany, Austro-Hungarian Empire, Russia) for mil-
itary topographic maps before World War I. In Hungary,
we find it on the maps of the third military survey. It
is also called the Müffling projection. The projection
is aphylactic, but the areal distortion is very small (the
bounding parallels are locally equal-area).

This projection is not supported by modern GIS tech-
nology, so we need to approximate the nature of the pro-
jection while georeferencing. The ellipsoidal version of
the sinusoidal projection is equidistant not only in the
two bounding parallels, but in all parallels. Its meridians
are not straight, but sinusoidal, however, their curvature
can be neglected within such a small area. Thus, this
projection approximates the polyhedric projection well
with an error of 20m at most, so the inaccuracy is below
the cartographic accuracy of the sections.
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Lesson twenty-two

Auxiliary angles in equal-area mappings

XXII.1 Eckert’s equal-area mappings

The projections discussed so far have all been aphylactic,
with one exception. We would therefore need a method
that somehow produces an equal-area projection from our
aphylactic mapping. This is the purpose of the method of
auxiliary angles, whose result is:

• The map frame and mapped meridians remain un-
changed.

• From an aphylactic projection, an equal-area projec-
tion is obtained.

• Among the basic properties of the graticule, only the
placement of the parallels is changed and therefore,
among other things, the pole-line or the pole-point
is preserved.

We already know from Sec. XX.1 that the parallels of
equal-area pseudocylindricals have constant scale. There-
fore, the present method works only for such pseudocyl-
indrical projections, whose parallels have constant scale.
Another condition is that the total area of the initial map-
ping is correct, otherwise it would not be possible to con-
struct an equal-area mapping in the given map frame.
The latter is not a problem, since any the total area of the
projection can be made correct by a scaling.*

Since we do not want to mess the mapped meridians,
it follows that we will only modify the latitudes with an
odd, differentiable function ψ(ϕ). We want to preserve
the frame of the projection, hence ψ(90°) = 90°. We also
expect the function to be strictly increasing so that the
map does not bend under itself. We then substitute the
auxiliary angle ψ for ϕ in the formulae of the original pro-
jection. This method can be considered as a special case
of the graticule renumbering transformation described in
the next lesson. The general formulae are a pleasure of
mathematics, so it is more comprehensible to demonstrate
the method on a certain map projection. The Eckert V
projection comes to mind, which has correct total area, its
parallels have constant scale, but is not equal-area. Let
us get down to the business! Substitute ψ for ϕ in the
original formulae.

x = cR
�λ
2

(1+ cosψ)

* Nothing illustrates the generality of the method better than the fact
that in the mid-20th century, everybody and his dog produced equal-
area pseudocylindrical projections using it. Due to the labour-intens-
ive nature of the task, only the three most important ones are listed
here, but there are also equal-area mappings with parabolic meridians
(Craster projection), various pointed-polar and flat-polar projections
with meridians as conic sections (Putnin, š projections) and mappings
with a strikingly short pole-line (McBryde–Thomas projections). These
are typically used in western cartography. The paradigm of the era was
that a good map was equal-area, and therefore aphylactic projections
were hardly ever produced during this period.

y = cR�ψ
c =

2
√
π+ 2

In Fig. XXII.1, we can see that the mapped spherical
zone of latitude ψ can be decomposed into a blue rect-
angle and two red areas under a cosine wave. The area of
the rectangle is not a problem, because its width is cRπ
and its height is y, i.e. cR�ψ, and we know, how to multiply.
The area under the cosine wave is more exciting because
we have to integrate. In addition, the height of the cosine
wave is not unity, but cRπ/2, so we have to multiply the
integral by that. Since in the vertical direction, the cosine
wave reaches zero not at π/2 but at cRπ/2, we multiply
the integral by cR to take this into account:

cR

ψU
0°

cRπ
2

cosψdψ =
c2R2π
2

sinψ − 0

The surface area of a spherical zone is
2R2π(sinϕ2 − sinϕ1), the formula known from Sec. II.2
simplifies to 2R2π sinϕ between the Equator and latitude
ϕ. If the projection is equal-area, then the summed areas
of the blue rectangle and the two red areas under the
cosine waves should give just the same:

c2R2
(
π�ψ + 2

π

2
sinψ

)
= 2R2π sinϕ

4
π+ 2

(�ψ + sinψ
)

= 2sinϕ

Substituting c back, we can check that the equation
is fulfilled for ψ = ϕ = 90°, so the function satisfies our
expectations. Since ψ cannot be expressed from the equa-
tion, it is an implicit function. It can be solved by numer-
ical methods. To compute the distortions, we form the
implicit derivative according to ϕ!

c2(1+ cosψ)
dψ
dϕ

= 2cosϕ

dψ
dϕ

=
2
c2

cosϕ
1+ cosψ

It can be seen that ψ is indeed strictly increasing as
expected, because its derivative is positive. Using the
chain rule:

h =
dy
dψ

dψ
dϕ

1
Rsinϑ

= c
2
c2

cosϕ
1+ cosψ

1
sinϑ

k =
1

Rcosϕ
�x

�λ
=
c
2
1+ cosψ

cosϕ

cotϑ =
�x
�ψ

dψ
dϕ

dy
dψ

dψ
dϕ

=
�x

�ψ

/
dy
dψ

= −
�λ
2

sinψ

We can check that indeed hk sinϑ = 1, so the Eckert VI
projection obtained in this way is equal-area. The formula
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cRπ cRπ
2

cR�ψc2R2π�ψ
c2R2π
2 sinψ

(a) For the Eckert VI projection

cRπ cRπ
2

cRπ
2 cosψ

cRπ
2 sinψ

c2R2π2

2 sinψ c2R2π2

4
�ψ/2

c2R2π2

8 sinψ cosψ

ψ

(b) For the Eckert IV projection

cRπ

cRπcosψ

cRπ
2 sinψ

c2R2π2

4
�ψc2R2π2

4 sinψ cosψ

(c) For the Mollweide projection

Figure XXII.1: Calculation of the auxiliary angle

of k has become quite complicated, so the equidistancy of
the central meridian is lost. Moreover, at the pole h = 0,
i.e. in the direction of meridians, it compresses the map
content unacceptably. This is compensated for by k→∞
to maintain equivalency, so the angular distortions at high
latitudes are not too favourable (Fig. XXII.2). It is often
found on European world maps, and is more popular than
aphylactic blended projections.

Since practice makes perfect, let us make an equal-
area mapping from the Eckert III projection. To make
the calculation easier, we start from the simpler formulae
containing χ, substituting the auxiliary angle ψ for χ:

x = cR
�λ
2

(1+ cosψ)

y = cR
π

2
sinψ

c =
4√

4π+π2

This time, in Fig. XXII.1, we decompose the mapped
spherical zone into three different shapes. The area of
the green rectangle is easy to determine, the height is
now y = cRπ/2sinψ. The radii of the two blue circular
sectors are cRπ/2. Their heights are cRπ/2sinψ, so using
the definition of sine, we find that ψ is the subtended
angle of the arc. The area of the circle (i.e. the circular
sector of angle 2π) is r2π, which gives us that the area
of the circular sector is proportionally r2�ψ/2. Only the
two red right triangles remain. We know the vertical leg
and the hypotenuse (the latter is the radius of the circular
sector), so thanks to Pythagoras, we can calculate the
horizontal leg. To do this, it is important to know that
sin2ψ + cos2ψ = 1. The area of a right triangle is half the

product of the two legs. The projection will be equal-area
if the area of the mapped spherical zone, i.e. the green
rectangle, the two blue circular sectors and the two red
right triangles, is exactly the surface 2R2π sinϕ of the
spherical zone:

c2R2
(
π2

2
sinψ + 2

π2

8
�ψ + 2

π2

8
sinψ cosψ

)
= 2R2π sinϕ

16
4π+π2

[
π

2
sinψ +

π

4
�ψ +

π

8
sin(2ψ)

]
= 2sinϕ

4sinψ + 2�ψ + sin(2ψ) = (4+π) sinϕ

Again, we have an implicit function, the equation is
satisfied at the pole, so far good. Check the monotonicity
using the implicit derivative of the first equation:

c2R2
[
π2

2
cosψ +

π2

4
(1+ cos2ψ − sin2ψ)

]
dψ
dϕ

= 2R2πcosϕ

c2π
2

(
cosψ +

2cos2ψ
2

)
dψ
dϕ

= 2cosϕ

dψ
dϕ

=
4
c2π

cosϕ
cos2ψ + cosψ

This is indeed a positive number. The distortions:

h =
dy
dψ

dψ
dϕ

1
Rsinϑ

= c
π

2
cosψ

4
c2π

cosϕ
cos2ψ + cosψ

1
sinϑ

=
2
c

cosϕ
1+ cosψ

1
sinϑ

k =
1

Rcosϕ
�x

�λ
=
c
2
1+ cosψ

cosϕ

cotϑ =
�x

�ψ

/
dy
dψ

=
−cR�λ

2 sinψ
cRπ
2 cosψ

= −
�λ
π

tanψ

(a) Eckert VI projection (b) Eckert IV projection

Figure XXII.2: Equal-area blended projections
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XXII. Auxiliary angles in equal-area mappings

Although the formulae only prove equivalency
(hk sinϑ = 1) at a glance, the Eckert IV projection is one
of the most favourable equal-area pseudocylindrical map-
ping commonly available in GIS (Fig. XXII.2), and is the
most widely used among Eckert’s projections. For map
themes requiring equivalency, it is highly recommended
for world maps. The mapped meridians are semi-ellipses.
The only drawback of the mapping is the pole-line and
the angular distortion that increases unbounded at high
latitudes (h = 0, k→∞, and cotϑ→∞). Eckert’s equal-
area projections were also published in 1906.

XXII.2 Mollweide projection

The Apian II projection cannot be converted directly into
an equal-area projection, because the method only works
for projections of correct total area. However, if the pro-
jection is slightly reduced by a constant c, its total area
can be made correct. The frame of the Apian II projection
is an ellipse of semi-major axis Rπ and semi-minor axis
Rπ/2. After reduction, both semi-axes are multiplied by c.
The area of the ellipse is the product of the two semi-axes
and π, which is equal to the surface 4R2π of the sphere:

c2R2π3

2
= 4R2π

c =
2
√
2

π

By multiplying the formulae with this constant, the
method of auxiliary angles can be performed. Again, we
substitute ψ into the formulae containing χ:

x = cR�λcosψ

y = cR
π

2
sinψ

This time, we are already familiar with finding the aux-
iliary angle. Fig. XXII.1 shows that the mapped spherical
zone can be decomposed into two red right triangles and
two blue shapes. The legs of the red right triangle are
given by the projection formulae x and y, the former with
the substitution λ = 180°. We notice immediately that
the dimensions of the blue and red figures differ from
that of the Eckert IV projection only in that everything
is now doubled in the horizontal direction, so their areas
are therefore doubled. The sum of the areas is again
2R2π sinϕ:

c2R2
(
2
π2

4
�ψ + 2

π2

4
sinψ cosψ

)
= 2R2π sinϕ

8
π2

[
π

2
�ψ +

π

4
sin(2ψ)

]
= 2sinϕ

2�ψ + sin(2ψ) = π sinϕ

Yes, by substituting 90°, the equation is fulfilled. The
derivative of the implicit function is calculated from the
first equation of the previous derivation:

c2R2
π2

2
(1+ cos2ψ − sin2ψ)

dψ
dϕ

= 2R2πcosϕ

c2π
2
2cos2ψ

dψ
dϕ

= 2cosϕ

dψ
dϕ

=
2
c2π

cosϕ
cos2ψ

Yes, the derivative is positive.

h =
dy
dψ

dψ
dϕ

1
Rsinϑ

= c
π

2
cosψ
sinϑ

2
c2π

cosϕ
cos2ψ

=
cosϕ
ccosψ

1
sinϑ

k =
1

Rcosϕ
�x

�λ
= c

cosψ
cosϕ

cotϑ =
�x

�ψ

/
dy
dψ

=
−cR�λsinψ
cRπ
2 cosψ

= −2
�λ
π

tanψ

From the formulae, it can be seen that the projection
is equal-area. At the Equator, k ≈ 0·9003, from there on,
k increases, reaching the value 1 (equidistant along the
parallel) at latitudeϕ ≈ ±40·7367°. Its angular distortions
are very large (Fig. XXII.3).

(a) Normal aspect

(b) Atlantis projection (oblique transverse, for the Atlantic Ocean)

Figure XXII.3: Mollweide projection

This mapping was created by the German Mollweide

in 1805, but only became widespread when the French
Babinet began to popularize it as the homolographic pro-
jection. It used to be popular, but is now less often used
because of its unfavourable distortions.* The projection is
pointed-polar, its meridians are smooth at the pole, which
makes it particularly suitable for graticule rotation.† The
Atlantis projection published in 1948, in the atlases of the
Scottish cartographer Bartholomew, is in fact this map-
ping in an oblique transverse aspect (ϕ0 = 0°, λ0 = 60°,
λ′p = −135°).

* Rarely, this projection is transformed by stretching (with a factor d
in the horizontal direction and 1/d in the vertical direction to preserve
areas), for example, to have a circular outline (Tobler projection) or to
have an equidistant Equator (Bromley projection).

† Woe betide anyone who tries to do a graticule rotation in GIS
software! To put it mildly, ArcGIS is not a friend of rotated non-conical
projections, it mostly supports this only among conical projections.
In theory, QGIS can rotate any known projection if +proj=ob_tran

+o_proj=code is substituted for +proj=code in the projection definition.
However, it is no good doing this, because practically our lines turn
jumbled in vector layers, rasters are drawn with no-data stripes.
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Lesson twenty-three

Renumbering the graticule

XXIII.1 The method ‘Umbeziffern’
Both the sinusoidal and Apian II projections have favour-
able distortions near the centre of the map, while near
the map frame they are quite poor, and we put it mildly.
Wagner and Siemon came up with the idea in the 1930s:
they used only the favourable parts of the projections
and squeezed the whole Earth in it. Their method has
no accepted term in English, it is usually referred to as
Umbeziffern (German word for renumbering).

The idea is to substitute the renumbered latitude ψ for
ϕ and the renumbered latitude ζ for λ in the projection
formulae. Since we want to preserve the characteristics
of the original graticule, it is important that parallels
remain parallels and meridians remain meridians. This
can be achieved by making ψ a function of ϕ only, and ζ
a function of λ only. Of course, the functions are strictly
increasing and differentiable.

Consider the simplest renumbering:

ψ =mϕ

ζ = nλ

If m,n < 1, then the above transformation will result
in using only a small fraction of the original projection.
Since this will also reduce the total area of our map, we
will restore the original scale by a factor of 1/

√
mn. Wag-

ner did not use the parameters n and m directly, but
instead used the ratio between the length of the central
meridian and that of the Equator (p) and the ratio between
the length of the pole-line and that of the Equator (q).
These are derived from the bounding latitude �ψB =mπ/2
and longitude �ζB = nπ, since the Pole and the 180° me-
ridian will be mapped to these values. For two projections,
we show how m and n can be obtained given p and q:

For the sinusoidal projection:

p =
y(ψB)
x(0,ζB)

=
R�ψB
R�ζB =

mπ
2

nπ
=
m
2n

q =
x(ψB,ζB)
x(0,ζB)

=
R�ζB cosψB

R�ζB = cos
(
m
π

2

)
m =

2
π

arccosq

n =
arccosq

πp

For the Apian II projection:

p =
y(ψB)
x(0,ζB)

=
R�ψB
R�ζB =

mπ
2

nπ
=
m
2n

q =
x(ψB,ζB)
x(0,ζB)

=
R�ζB√1− (2�ψBπ )2

R�ζB =
√
1−m2

m =
√
1− q2

n =

√
1− q2

2p

The Wagner III projection is a renumbered sinusoidal
projection with the choice p = q = 1/2 (i.e., m = n = 2/3),
while the Wagner VI projection is a renumbered Apian

II projection by choosing p = q = 1/2 (i.e., m = n =
√
3/2).

These aphylactic mappings and Eckert’s projections are
like peas in a pod, but the formers retain the equidistant
central meridian.* An important difference is that the
meridians of the renumbered graticules consist only of
the middle sections of the sinusoidal or elliptic arcs, and
are therefore less curved than in the blended projections
(Fig. XXIII.1). These projections are almost never en-
countered, but their principle helps to understand a pop-
ular Russian projection.

(a) Wagner III projection

(b) Wagner VI projection

Figure XXIII.1: Projections modified by the Umbeziffern

* To distribute the distortions more favourably, the projection may
be subjected to a stretching of factor d in the direction of the Equator.
This will still preserve the equidistancy of the central meridian, but
another latitude will be equidistant instead of the Equator.
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XXIII. Renumbering the graticule

XXIII.2 Kavrayskiy VII projection

If you are looking for an aphylactic pseudocylindrical
projection, and nothing matters except the balance of
distortions, choose the Kavrayskiy VII projection: It is the
least distorted of all the well-known pseudocylindrical
mappings. The projection is defined by four conditions:

• The mapped parallels are divided by meridians pro-
portionally.

• Meridians are arcs of ellipses, but the mapped me-
ridians ±120° are arcs of circles.

• Its pole-line is half as long as the Equator.
• It is equidistant in the central meridian.
From the first two conditions, we can see that we have

to cut the corresponding piece from the Apian II pro-
jection using the Umbeziffern. In this projection, the
meridians ±90° are mapped to arcs of circles. To trans-
form longitude ±120° here, we renumber meridians by
n = 90°/120° = 3/4. By the third condition, q = 1/2, i.e., by
using the cheat sheet of Wagner, m =

√
1− q2 =

√
3/2. Be-

cause of the fourth condition, Wagner’s proposed scaling
by 1/

√
mn will not be correct. Instead, we seek a scaling

factor that restores the vertical axis. Since the latitudes
have been shrunk by a factor of m, the length of the cent-
ral meridian is restored by a scaling factor of 1/m = 2/

√
3.

The formulae of the projection are therefore:

x =
R
m

�ζ
√
1−

(
2�ψ
π

)2
=
R
m
n�λ√1− (2m�ϕ

π

)2

= R
6
4
√
3
�λ
√
1−

(
2
√
3�ϕ
2π

)2
= R
√
3
2

�λ
√
1−

(√
3�ϕ
π

)2
y =

R
m

�ψ =
R
m
m�ϕ = R�ϕ

Since we have been so clever, let us get to the distor-
tions!

h =
dy
dϕ

1
Rsinϑ

=
1

sinϑ

k =
1

Rcosϕ
�x

�λ
=
√
3
2

√
1−

(√
3�ϕ
π

)2
cosϕ

cotϑ =
�x

�ϕ

/
dy
dϕ

=
√
3
2

�λ −3�ϕ
π2√

1−
(√
3�ϕ
π

)2
Aside from the inconvenience of k → ∞ in the pole-

line, we have a very favourable projection.* Its only flaw
is that Kavrayskiy published it in Russian in 1939, so
it could not be widespread in most of the world due to
language barriers, and can be found mostly in atlases
of Eastern Europe and the former Soviet states. The ori-
ginal derivation did not use the Umbeziffern, but was

* Of the well-known pseudocylindrical projections, this projection is
among the least distorted ones. But how does the least possible distorted
pseudocylindrical mapping look like? We do not know much about this,
only that Györffy realized that the best pseudocylindrical is equidistant
in the central meridian. Well, that is not much information, considering
that the horrible sinusoidal projection also has an equidistant central
meridian. . .

described independently. It is very suitable as a world
map (Fig. XXIII.2), if you want to represent geographical
zones in horizontal stripes (e.g. climate zones).

Figure XXIII.2: Kavrayskiy VII projection

XXIII.3 The Wagner transform

We already have a renumbering that preserves the
equidistant central meridian and uses only the favour-
able parts of the projection. There is also one that cre-
ates an equal-area map but fills the entire map frame.
Could we develop such an Umbeziffern transformation
that uses only the favourable, central parts of an equal-
area projection, and the result is still equal-area? Since
a pseudocylindrical mapping can only be equal-area if
its parallels have constant scale, we must preserve this.
The new longitude is therefore a linear function of the
old one:

ζ = nλ

The projection can only remain equal-area if the
mapped surface of any spherical zone is in direct pro-
portion to the old one after renumbering. Reduce each
spherical zone by a factorm. The new surface of the spher-
ical zone (2R2π sinψ) must be equal to m times the old
surface (2R2π sinϕ):

2R2π sinψ =m2R2π sinϕ

ψ = arcsin(msinϕ)

This idea was developed by Siemon, and then Wagner

used it to form equal-area projections, hence the Umbezif-
fern that preserves equivalency is also called the Wagner

transform.† If m,n < 1, we will use again the middle part
cut from the projection (Fig. XXIII.3). The projection is
not equal-area yet, because the areas have been reduced
by a factor of n while renumbering the longitudes, and
by a factor of m while renumbering the latitudes. The
areas have thus been rescaled by a factor of mn, so we
need to magnify them back by the factor 1/mn. The areas

†
Wagner also created maps with small (p < 1·2) areal distortion

up to latitudes of 60°. This was achieved by using the Umbeziffern
ψ = arcsin[m1 sin(m2ϕ)] and ζ = nλ. These are the Wagner II and V
projections. It can be seen that the more m2 deviates from 1, the more
the projection deviates from equivalency, so the areal distortions can be
controlled.
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XXIII. Renumbering the graticule

are proportional to the square of the scaling factor, so a
scaling factor of 1/

√
mn restores the area.*

Renumbering

Rescaling

Figure XXIII.3: The substance of the Umbeziffern

Again, Wagner gave the ratio between the length of the
central meridian and that of the Equator (p) and the ratio
between the length of the pole-line and that of the Equator
(q) as parameters. Let us see again for two projections
how they are obtained from the latitude �ψB = arcsinm
and the longitude �ζB = nπ!

For the sinusoidal projection:

p =
y(ψB)
x(0,ζB)

=
R�ψB
R�ζB =

arcsinm
nπ

q =
x(ψB,ζB)
x(0,ζB)

=
R�ζB cosψB

R�ζB = cosarcsinm =
√
1−m2

m =
√
1− q2

n =
arcsin

√
1− q2

πp

For the Mollweide projection, you have to do some
tricks because it already has a renumbered latitude.
Therefore, ψB is expressed in terms of q and then m is
obtained from the implicit function:

q =
x(ψB,ζB)
x(0,ζB)

=
cR�ζB cosψB

cR�ζB = cosψB

p =
y(ψB)
x(0,ζB)

=
cRπ
2 sinψB
cR�ζB =

π
2

√
1− q2

nπ
=

√
1− q2

2n

2�ψB + sin(2ψB) =mπ sin90°

m =
2arccosq+ sin(2arccosq)

π

n =

√
1− q2

2p
* Naturally, the area is preserved if we then stretch the projection

by a factor d in the horizontal direction and a factor 1/d in the vertical
direction, which is another way to fine-tune the distortions.

Because of its complexity, the Wagner transformed
Mollweide projection is not used, although it gives a sur-
prisingly pleasing picture despite being equal-area. The
choice p = q = 1/2 is the Wagner IV projection, which has
very favourable distortions as shown in Fig. XXIII.4; the
other choices were called Mollweide series by Wagner.

The Mercator series, i.e. the Wagner transformed si-
nusoidal (or Meractor–Sanson) projection is more im-
portant from a practical point of view. From the condition
p = q = 1/2, we get m =

√
3/2, n = 2/3, and 1/

√
mn = 4

√
3,

i.e. the projection formulae:

x =
R�ζ
√
mn

cosψ =
Rn�λ
√
mn

√
1− sin2ψ

=
Rn�λ
√
mn

√
1−m2 sin2ϕ = R

2 4
√
3
3

�λ√1− 3
4

sin2ϕ

y =
R�ψ
√
mn

=
Rarcsinsinψ
√
mn

=
Rarcsin(msinϕ)

√
mn

= R 4
√
3arcsin

(√
3
2

sinϕ
)

Kavrayskiy discovered this projection in 1936, while
Wagner discovered it in 1932, so it is called both the Ka-

vrayskiy VI and the Wagner I projection. It is very often
found as equal-area world maps in the former Eastern
Bloc countries. The projection should not be confused
with the Eckert VI projection, whose meridians are com-
plete sinusoids, not just two-thirds from their middle. In
the Kavrayskiy VI projection, the meridians are therefore
less curved. Following Urmayev’s suggestion, members
of the Mercator series also appear on Soviet ocean maps
with a different choice of m and n.

XXIII.4 Composite projections

Some projections show more favourable distortions
around the Equator, while others show more favourable
distortions at higher latitudes. For example, the sinus-
oidal projection maps the Equator distortion-free, but is
less applicable at high latitudes, where other projections
are preferable. Could not a projection be created that
shows each area separately in its corresponding projec-
tion and then the parts are stitched together? If a projec-
tion has piecewise projection formulae for different parts
of the Earth, the mapping is called a composite projection.

(a) Kavrayskiy VI projection (Wagner I projection) (b) Wagner IV projection

Figure XXIII.4: Equal-area projections using the Umbeziffern
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XXIII. Renumbering the graticule

The American cartographer Goode published his idea
of the homolosine projection in 1923: let us plot the low lat-
itudes in the sinusoidal projection, and the high latitudes
in the Mollweide (homolographic) projection for both
hemispheres! Of course, the expectation is that the two
projections should fit on the bounding latitude. We know
that the sinusoidal projection is equidistant in all paral-
lels, but in the Mollweide projection is equidistant only
at latitudes ϕB ≈ ±40·7367°. It already follows that the
two projections can only fit at these two latitudes. Thus,
in the Goode projection, we use the sinusoidal projection
at latitudes −40·7367° < ϕ < 40·7367°, and Mollweide

projection at latitudes higher than this.
In order to align the parts, the Mollweide projection

must be shifted slightly vertically towards the Equator.
In the sinusoidal projection, the bounding latitude is
mapped to yS = R�ϕB, while the Mollweide projection
maps it to yM =

√
2RsinψB, where the auxiliary angle ψB

is given by the implicit function (Sec. XXII.2) as 32·6893°.
From this, the shift is ∆y = yS − yM ≈ −0·05280R.

Goode also suggested that since the projection is only
favourable in the neighbourhood of the central meridian,
each continent should be mapped using its own central
meridian. As shown in Fig. XXIII.5, the different meridi-
ans result in that the parts are connected to each other
only along the Equator and that there are discontinuities
in the oceans. Mappings using different central meridians
for different longitudes are known as interrupted projec-
tions.

Figure XXIII.5: Goode projection

In the Goode projection, the middle parts of the
mapped meridians are sinusoids, the outside parts are
arcs of ellipses. At the bounding parallels, the meridians
are cusped, which is not aesthetic to say the least. The
projection is made up of equal-area projections, and is
therefore also equivalent. The distortions of interrupted
projections are generally significantly better than those of
usual projections, but the increased number of cuts makes
it difficult to perceive the contiguity of adjacent areas.*

They are unsuitable for maps of global relationships or

* Of course, any other projection can be used as an interrupted
projection instead of the Goode projection. A common example is the
Boggs projection, a blended projection of the sinusoidal and Mollweide

projections modified with auxiliary angles to make it equal-area.

geopolitical conditions. Discontinuities should always
be placed so as to have the least possible impact on the
map’s theme. Accordingly, Goode has created an oceanic
version, with the central meridians in the middle of the
oceans and the cuts running mostly across continents.

As the Goode projection is still unfavourable in its un-
interrupted form, Hungarian cartographer Érdi-Krausz

improved the idea in 1968. He widened the area of the
central zone to the bounding latitude ϕB = ±60° or ±70°.
In this zone, he applied the a Wagner transformed sinus-
oidal projection found in Sec. XXIII.3. Érdi-Krausz chose
the values p = 0·4 and q = 0·6. This gives m = 0·8 and
n = arcsin(0·8)/(0·4π).

In the Mollweide projection, the length of the bound-
ing parallel is shorter than in the Wagner transformed
sinusoidal projection. To fit the parts, the Mollweide pro-
jection needs to be enlarged. The scaling factor is given
by the original lengths of the corresponding parallels:
c ≈ 1·188719 for ϕB = 60° and c ≈ 1·387333 for ϕB = 70°.
The Mollweide projection must be shifted in the vertical
direction also in this projection to align them together.
If ϕB = 60°, 0·285475R must be subtracted from the y
coordinate, and 0·583282R if ϕB = 70°.

The Érdi-Krausz projection does not ensure the smooth
join of meridians, but this is less obvious than in the
Goode projection (Fig. XXIII.6). Former cartographers
used to blot out the cusp with loose strokes.† The mapping
is composed of equal-area projections, but the parts using
the Mollweide projection had to be enlarged to fit. Since
the final projection would then no longer be equal-area,
two nominal scales and scalebars were added to the maps:
one for low latitudes and one for high latitudes.

Figure XXIII.6: Érdi-Krausz projection

This projection is common in Hungarian world atlases,
but is barely known abroad. It can be recommended
for pointed-polar world maps of economic or other map
themes requiring equivalency. This mapping is not typic-
ally supported by GIS software.

† In 2002, Juhász showed that with a slight modification of the
projection formulae, this cusp can be eliminated mathematically, and
his solution also eliminates the different scale, so it can be considered
as equal-area in a strict sense. In 2004, Gede further developed the
solution by discovering a set of projections and selecting the one with
the most favourable distortion, which, despite being equal-area, exhibits
relatively low angular distortion.
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Lesson twenty-four

Modern pseudocylindrical maps

XXIV.1 The Baranyi projections

In the middle of the 20th century, equal-area world maps
were all the rage. During this period, newer and newer
equal-area projections were developed, and not equival-
ent world maps were considered outdated. This was
crowned by Peters’s wonderful mapping that ignored
angular distortions. This became a hot potato in the carto-
graphic community, so they began to construct aphylactic
mappings that favourably represented the shape of the
continents. These graticules were drawn by people less
skilled in mathematics, so they were typically published
in the form of constructions describing the map. In other
cases, the graph paper positions of the intersection points
of graticule lines were given in tabular form. This was not
a problem at the time, as the cartographic content of each
geographical quadrangle was plotted manually anyway.
Digital cartography, however, requires exact formulae for
mapping; so these must be subsequently provided as an
approximation if such a mapping is applied.

Among the developers of such maps, Baranyi deserves
special mention, who published a number of projections
in 1968. These all aimed to represent the shape of the
continents faithfully. His maps have also received some
international attention for their favourable distortions.
He published his graticules in the form of constructions.

The frame of the Baranyi II projection consists of
arcs smoothly connected at ϕB = 70°. The Equator is
equidistant, the length of the central meridian is 0·7 times
that of the Equator. On the central meridian, distances
of parallels increase as an arithmetic progression so that
latitude 70° divides the central meridian in the ratio 13 : 5.
All parallels have constant scale. Based on this descrip-
tion, Karsay and Györffy gave an approximate formula:*

x =
�λ
π
×

(Rπ − r1 + r1 cosχ) if |ϕ| ≤ ϕB
r2 sinζ if |ϕ| > ϕB

y = R
(
0·95|�ϕ|+ 0·005180

π
�ϕ2)signϕ

The radius of the lateral arcs is r1 ≈ 1·84466R, that of
the lower and upper arcs is r2 ≈ 4·39461R. χ and ζ can
be calculated from these relations (derivation in App. K):

r1 sinχ = y

r2 cosζ = r2 − 0·7Rπ+ y

In the Baranyi projections, the meridians pass through
the pointed pole without break. The mapping is aphylac-
tic, the angular distortions are severe near the map frame,

* The Baranyi projections are not supported by ArcGIS, and older
open source programs used Voxland’s approximation formulae, which
differ slightly from those known in the Hungarian literature. The Bara-

nyi projections have disappeared from QGIS into thin air.

just as the areal distortions around the poles (Fig. XXIV.1).
It is therefore recommended for thematics concentrating
on lower latitudes. It has been used mainly for world
maps in Hungarian historical atlases.

Figure XXIV.1: Baranyi II projection

The description of the Baranyi IV projection does not
give any guidance on how the distances on the reference
frame relate to the map scale units. Therefore, we will
start from the assumption that there is no distortion at
the intersection of the Equator and the central meridian.

The map frame is formed by four arcs of circles, just as
in projection II. The radius of the lateral arcs is r1 = 100
units. The length of the central meridian is 222 units and
that of the Equator is 368 units. By geometric considera-
tions, the radius of the lower and upper arcs r2 ≈ 426·23
can be calculated from the smooth connection of the arcs.
Baranyi has divided the central meridian unevenly. The
middle latitudes (30°–60°) are magnified, here the dis-
tance between the round (10°) parallels is 13 units, at
lower and higher latitudes it is only 12 units. Györffy

fitted a polynomial of degree nine to the values, which
proved effective. The round (10°) meridians cross the
Equator at 2 × 12, 4 × 11, 8 × 10, and finally 4 × 9 units,
respectively; the other parallels are divided in the same
proportion. Györffy approximated the nature of this
decrease by a logarithm.

The framing arcs join at about 96·63 units from the ho-
rizontal axis, which, when compared with the positioning
of the parallels, gives ϕB ≈ ±78·07°. Since the radii of the
arcs are different, a different function will give the length
of the parallels on either side of the bounding parallel.
The approximate formulae are given by Györffy:

y = R(�ϕ + 0·073880�ϕ3 − 0·0538964�ϕ5 +

0·01560242�ϕ7 − 0·001639406�ϕ9)
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x =
ln

(
1+ 0·11679

∣∣∣�λ∣∣∣)
0·31255

signλ

×


(
1·22172R+

√
2·115393R2 − y2

)
if |ϕ| ≤ ϕB√

38·4308R2 −
(
4·58448R+

∣∣∣y∣∣∣)2 if |ϕ| > ϕB

Baranyi intended his projection for economic maps by
enlarging the middle latitudes, since most of the map
symbols are placed in this zone. The areas beyond the
polar circles and in the Pacific Ocean are severely distor-
ted, but the lands are shown with very faithful shapes
and favourable distortions (Fig. XXIV.2). For this reason,
it was popular in the Hungarian atlas cartography for a
long time. Because it is pointed-polar, it was often used
as world maps of school atlases. If equivalency is not a
requirement, it can be used as a world map. Since it is
not supported by the vast majority of GIS packages, it
has recently disappeared undeservedly, replaced by less
favourable flat-polar projections.

Figure XXIV.2: Baranyi IV projection

Baranyi did not develop an interrupted projection in
the fashion of that time. At Márton’s request, however,
he allowed to produce an interrupted version of his projec-
tion IV. The purpose of the interrupted Baranyi projection
is to show the world ocean, i.e., unlike the original Bara-

nyi projections, lower distortions are placed in the oceans
rather than on land. The projection was designed by Már-

ton, with approximate formulae subsequently provided
by Györffy. The projection was finalized in 2004.

The projection is composed of two Baranyi IV projec-
tions. The left part of the map retains the original central
meridian at 10° E. This section shows the Atlantic and
Indian Oceans (between 100° W and 100° E). The right
part of the map shows the Pacific Ocean (between 140°
W and 60° W) with a central meridian of 160° W. For the
right side, 3·036131R must be added to the coordinate x
to connect them. As shown in Fig. XXIV.3, the Americas
(between 100° W and 60° W) are shown in both parts.

Between the two parts, there is a 40° wide transition
zone, which is connected to the right side in the Northern
Hemisphere and to the left side in the Southern Hemi-
sphere. The area around Tasmania (south of 35° S and
west of 150° E) is repeated* in the transition zone. In

* Although the interrupted Baranyi projection is not the only one
that represents certain parts of the area more than once, GIS packages
simply give up the ghost from such projections. There is no way to
program multiple representation. That is why such projections are only
viable in Corel, their future is questionable.

Figure XXIV.3: Interrupted Baranyi projection (by Márton)

the transition zone, y is equal to that of the Baranyi IV
projection, x is formulated as follows (xl is the bounding
x coordinate of the left projection substituting ∆λ = 90°,
xr is the boundary of the right projection substituting
∆λ = −60°):

x =



xr +
[
0·332949

(�λ+ π
3

)
+ 0·0123215

(�λ+ π
3

)2]
×
(
1·22172R+

√
2·115393R2 − y2

) if 0 ≤ ϕ ≤ ϕB

xr +
[
0·332949

(�λ+ π
3

)
+ 0·0123215

(�λ+ π
3

)2]
×
√
38·4308R2 −

(
4·58448R+

∣∣∣y∣∣∣)2
if ϕ > ϕB

xl +
[
0·315744

(�λ− π
2

)
+ 0·0123215

(�λ− π
2

)2]
×
(
1·22172R+

√
2·115393R2 − y2

) if −ϕB ≤ ϕ < 0

xl +
[
0·315744

(�λ− π
2

)
+ 0·0123215

(�λ− π
2

)2]
×
√
38·4308R2 −

(
4·58448R+

∣∣∣y∣∣∣)2
if ϕ < −ϕB

The Arctic Ocean is depicted on an inset map in the azi-
muthal equidistant projection. The mapped North Pole is
translated to x = 1·379854R, y = 1·055924R. The frame of
the inset is a circle of radius 32°, or r = 0·558505R, centred
at 81° N, 90° W (i.e. x = 1·240775R, y = 1·055924R).

This aphylactic projection is mainly found in oceano-
graphy textbooks and theses on oceans prepared at Eötvös
Loránd University.

XXIV.2 Projections given by tables

At the same time as Baranyi, Robinson, who was em-
ployed at the Rand McNally company, developed his
graticule following exactly the same principles. He repor-
ted the map (also known as the orthophanic projection) in
a tabular form, so most software use some form of inter-
polation. Beineke’s approximate formula is much simpler
and satisfactory for small-scale mapping purposes:

x = R
(
2·6666− 0·3670�ϕ2 − 0·1500�ϕ4 + 0·0379�ϕ6)�λ

π

y = R
(
0·96047�ϕ − 0·00857|�ϕ|6·4100 signϕ

)
88



XXIV. Modern pseudocylindrical maps

The projection in Fig. XXIV.4, is aphylactic, reminiscent
of the Baranyi IV projection.* Its major drawback is that
it achieves similar distortion characteristics by using a
flat-polar map. It is still very popular in the US, and for
many years, National Geographic maps were produced in
this projection.

Figure XXIV.4: Robinson projection

The idea of Robinson and Baranyi was that the percep-
tion of projection distortion is subjective, and therefore
subjective methods are needed to achieve favourable dis-
tortions. Although a number of studies since then have
shown that the shape accuracy of continents is mathem-
atically well-defined, it is still popular today to create
projections by bypassing mathematics. The advent of the
application Flex Projector has contributed significantly to
the proliferation of new projections.

It is an interactive application where you can control
the map with sliders. In addition to the image of the
projection, the display also shows its distortions. In this
way, countless interested people have been able to create
(and name after themselves) new graticules. Some of
them are now supported by ArcGIS and QGIS. Most of
the new projections are cylindricals or pseudocylindricals,
but miscellaneous projections have also been created with
this program. Although it is possible to create a pointed-
polar map in it, the trendy mappings are all flat-polar.
An example is Patterson’s Natural Earth projection from
2007, for which Šavrič provided an approximate formula.

Even an equal-area projection was created in Flex Pro-
jector by Patterson, Jenny and Šavrič in 2018 called
Equal Earth, which tries to mimic the Robinson projection
(Fig. XXIV.5).† An approximate mathematical description
is known for it, ensuring the equivalency of the mapping.

Compared to the previous ones, the method of Urmayev

is closer to maths. He arbitrarily prescribed distortions
at certain points on the map. From this, he obtained a
system of non-linear second-order differential equations,
which he solved approximately: he plotted the estim-
ated graticule on graph paper and manually adjusted the
drawing until the distortions returned by cartometry were

* There was certainly a big quarrel when the publications appeared!
Although Baranyi had published his projections as early as 1968, Robin-

son did not do so until 1974, and did not even mention Baranyi. Bara-

nyi accused Robinson of plagiarism, but he claimed that he had already
created his projection in 1963, and maps had been published in that
projection; he therefore claimed the first place, and accused Baranyi of
plagiarism. In the absence of evidence, it was never clarified who had
created the first hand-drawn projection.

†
Patterson’s intention even a few years ago was to offer a better

equal-area projection than the Gall–Peters projection. Because, yes,
there are still people promoting this mapping today.

(a) Natural Earth

(b) Equal Earth

Figure XXIV.5: Maps designed in Flex Projector

close to the expected ones. The method was widely used
in the Soviet Union, most notably by Ginzburg’s maps.

The Ginzburg VIII projection, created in 1949, is a
pseudocylindrical mapping in which the Soviet Union is
expected to have low distortion (Fig. XXIV.6). There is
no angular distortion and 50% areal exaggeration at 50°
N, 80° E. At latitude 28°, we expect no areal distortion,
and at the intersection of the Equator and the bounding
meridian, we prescribe 25% decrease. Ginzburg approx-
imated this with the following formulae:‡

x = R
(
1−

�ϕ2
6·16

)0·87�λ−
∣∣∣�λ∣∣∣4 signλ

1049·95


y = R(�ϕ + �ϕ3/12)

Figure XXIV.6: Ginzburg VIII projection

The mapping is aphylactic, its meridians are dense near
the map frame. It was favoured by Russian cartography.
Due to the cut of America, the map was continued beyond
the bounding meridian, but the poles were truncated.

‡ The formulae used in QGIS are incorrect!
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Pseudoconic & pseudoazimuthal mappings

XXV.1 Map projections with circular

parallels

Parallels in pseudoazimuthal, pseudoconic, and polyconic
mappings are mapped to circles or arcs of circles. We also
expect reflection symmetry about axis y, so the centres
of these circles fall on axis y. These projections are de-
scribed using the polar coordinate system usual in conic
projections, but note two differences! First, the centres of
the mapped parallels are not fixed, their distance from
the axis x is described by a function c(ϕ), so the origin
of the polar coordinates moves depending on the latit-
ude. Second, since the meridians are neither necessarily
straight nor necessarily evenly spaced, the polar angle can
be an arbitrary function ε(ϕ,λ) (due to symmetry, odd
and strictly increasing in λ). The radii of parallels are still
given by the radius function ϱ(ϕ). Fig. XXV.1 shows that
the general mapping formulae are:

x = ϱ sinε

y = c − ϱcosε

x

y

Parallel

M
eridianϱ

ϱ sinε
c

ϱ
cosε

ε

ϑ

Figure XXV.1: Polar coordinates in pseudoconics and polyconics

Let us examine the distortions of such projections.

k =

√(
�x
�λ

)2
+
(
�y
�λ

)2
Rcosϕ

=

√
ϱ2 cos2 ε

(
�ε
�λ

)2
+ ϱ2 sin2 ε

(
�ε
�λ

)2
Rcosϕ

=
ϱ

Rcosϕ
�ε

�λ

cotϑ =
�x
�ϕ

�x
�λ + �y

�ϕ
�y
�λ

�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

=

(
dϱ
dϕ sinε+ϱcosε �ε

�ϕ

)
ϱcosε �ε

�λ
+
(

dc
dϕ −

dϱ
dϕ cosε+ϱ sinε �ε

�ϕ

)
ϱ sinε �ε

�λ(
dc
dϕ −

dϱ
dϕ cosε+ϱ sinε �ε

�ϕ

)
ϱcosε �ε

�λ
−
(

dϱ
dϕ sinε+ϱcosε �ε

�ϕ

)
ϱ sinε �ε

�λ

=
ϱ �ε�λ

(
ϱ �ε�ϕ cos2 ε+ dc

dϕ sinε+ ϱ �ε�ϕ sin2 ε
)

ϱ �ε�λ

(
dc
dϕ cosε − dϱ

dϕ cos2 ε − dϱ
dϕ sin2 ε

)
=
ϱ �ε�ϕ + dc

dϕ sinε

dc
dϕ cosε − dϱ

dϕ

The linear scale in the direction of meridians
can be calculated by the general formula h =√

(�x/�ϕ)2 + (�y/�ϕ)2/R, but after performing the deriva-
tions we obtain unmanageable mile-long formulae. There-
fore, we resort to a trick. First, we express the areal scale
p. Notice that the numerator of p is the same as the de-
nominator of cotϑ, so we do not need to re-derive it, we
can drop in the denominator we just transformed!

p =

�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

R2 cosϕ

=
ϱ �ε�λ

(
dc
dϕ cosε − dϱ

dϕ cos2 ε − dϱ
dϕ sin2 ε

)
R2 cosϕ

=
ϱ

R2 cosϕ
�ε

�λ

(
dc
dϕ

cosε −
dϱ
dϕ

)
But p = hk sinϑ:

ϱ

R2 cosϕ
�ε

�λ

(
dc
dϕ

cosε −
dϱ
dϕ

)
= h

ϱ

Rcosϕ
�ε

�λ
sinϑ

h =
1

Rsinϑ

(
dc
dϕ

cosε −
dϱ
dϕ

)
XXV.2 Pseudoconic projections

If all the parallels are concentric arcs of circles, then the
non-conical mapping is classified as a pseudoconic projec-
tion. In these projections, c is constant, so we can omit
the term containing the derivative of c in the formula for
cotϑ:

cotϑ = −ϱ �ε
�ϕ

/
dϱ
dϕ

In a rectangular projection, either ϱ or �ε/�ϕ must be
zero. In the former case the map would collapse to a
single point, in the latter case the meridians would be
straight, which would lead to a conic projection. Thus,
there is no rectangular, and hence no conformal mapping
among pseudoconics. Furthermore, h is also simplified:

h = −
dϱ
dϕ

1
Rsinϑ

From this:

p = hk sinϑ = −
dϱ
dϕ

1
sinϑ

ϱ

cosϕ
�ε

�λ

sinϑ
RR

= −
ϱ

R2 cosϕ
�ε

�λ

dϱ
dϕ
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In equal-area projections, p = 1, so:

−
ϱ

R2 cosϕ
�ε

�λ

dϱ
dϕ

= 1

�ε

�λ
= −R2

cosϕ

ϱ dϱ
dϕ

On the right-hand side, there are functions of ϕ only,
i.e. the partial derivative of ε is independent of λ. This
implies that ε is a linear function of λ, and in equal-area
pseudoconic mappings, the parallels are evenly divided by the
meridians (parallels have constant scale).

Find a pseudoconic mapping that is equidistant in the
central meridian and in all parallels! From the equidistant
central meridian, −dϱ/dϕ = R:

ϱ = R(−�ϕ + d) = R(d − �ϕ)

k = 1, so:

ϱ

Rcosϕ
�ε

�λ
= 1U

dε =
U

cosϕ
d − �ϕ dλ

�ε =
cosϕ
d − �ϕ�λ+ f (ϕ)

The symmetry about the central meridian is satisfied
if f (ϕ) = 0, so we bid a tearful farewell to this constant
of integration. Substituting ϕ = ±90° we get ε = 0, i.e.
the projection is pointed-polar. Let us examine the distor-
tions, remembering that k = 1:

h = −
dϱ
dϕ

1
Rsinϑ

=
1

sinϑ

cotϑ = −ϱ �ε
�ϕ

/
dϱ
dϕ

=
R(d − �ϕ)

R

−sinϕ(−�ϕ + d) + cosϕ
(d − �ϕ)2

�λ
=
−sinϕ(d − �ϕ) + cosϕ

d − �ϕ �λ
Our first observation is that hk sinϑ = 1, so we have an

equal-area projection. We can also see that the central
meridian is true-scale (h = k = 1 and cotϑ = 0), but as we
depart, angular distortion increases rapidly. Could we
expect a standard parallel ϕs to be true-scale? To do so, it
is sufficient to solve the equation cotϑ = 0 at ϕ = ϕs, since
then sinϑ = 1, i.e. it is guaranteed that h = k = 1:

−sinϕs(−�ϕs + d) + cosϕs
−�ϕs + d

�λ = 0

cosϕs = sinϕs(−�ϕs + d)

d = cotϕs + �ϕs
In other words, the projection has a standard parallel,

the position of which can be controlled by choosing the
constant of integration d. Ifϕs = 90°, i.e. d = π/2, the map-
ping is called the Werner or Stab projection (Fig. XXV.2).
Its exact authorship is unknown, its eponyms applied it
in the early 1500s. A feature of the projection is that the
Earth is represented in a shape of a heart. For ϕs = 0°,

(a) ϕs = 90° (Werner projection)

(b) ϕs = 45°

Figure XXV.2: Bonne projection

d→∞, ϱ→∞, i.e. the parallels are straight, and the good
old sinusoidal projection is obtained.

By choosing ϕs differently, we are talking about the
Bonne projection. It was developed gradually from the
Ptolemy II projection making more parallels equidistant
in the 1400s, so it is the oldest equal-area mapping. Al-
though it is favourable in the cross-shaped area defined
by the central meridian and the standard parallel, fur-
ther away the angular distortions are very unfavourable,
even worse than the equal-area conic projection. Never-
theless, this mapping is overused for continental maps.
The French even used it on topographic maps before the
Second World War, although it is not quite conformal.
They suffered with it. Due to its topographic use, ellips-
oidal formulae are also known, which are similarly derived
from the equidistant central meridian and parallels:

ϱ =N (Φs)cotΦs −
ΦU
Φs

M(Φ)dΦ

�ε =
N (Φ)cosΦ

ϱ
�Λ
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Other pseudoconics have also been developed, which
are also mostly equal-area, but almost no one knows them.
These flat-polar mappings, which are not used at all, are
recommended for areas of large east-west extent at middle
latitudes. Some of them are also suitable for representing
the whole Earth.* Unlike the Bonne projection, these have
very low distortion.

XXV.3 Pseudoazimuthal projections

If the mapped parallels are complete concentric circles,
then we are talking about a pseudoazimuthal projection.
Since every parallel is mapped to a circle, the infinites-
imal circle centred at the pole is also mapped to a circle.
This implies that the pseudoazimuthal mappings are loc-
ally conformal at the pole. An advantage is that the rep-
resentation is interrupted at only one point. In contrast
to azimuthal projections, isocols have an oval shape, and
are therefore chosen for areas of this shape. The projec-
tion is favourable near the pole, so we use the colatitude
δ = 90°−ϕ instead of the latitude in the formulae.

Because parallels are closed in pseudoazimuthals, it is
true for any λ that ε(δ,λ) = ε(δ,λ+ 360°)− 360° (i.e., by
moving the longitude by one turn around the parallel,
ε also changes one turn). Therefore, a projection can be
pseudoazimuthal if angle ε −λ is a periodic function of λ
with period 360°.

Due to the concentricity of mapped parallels, we can
use the simpler distortion formulae we have seen for
pseudoconic projections. From these formulae, we have
already established that, if an rectangular graticule is de-
sired, the meridians would be straight, so no conformal
mapping is found among pseudoazimuthals, too. From the
equation for equivalency, we have found that the neces-
sary condition for an equal-area map is that ε is a linear
function of λ. However, ε −λ can only be periodic at the
same time if ε−λ is constant (or to be more precise, it is a
function of δ only). Since ε −λ is an odd function due to
the requirement of symmetry, the only possible constant
is ε−λ = 0. This leads to ε = λ, i.e. we found an azimuthal
mapping. Because of the contradiction, there is no equal-
area pseudoazimuthal projection.†

Note that, in most cases, we expect reflection symmetry
not only about the vertical axis but also about the hori-
zontal axis among pseudoazimuthal mappings. Omitting
derivation, we find that in this case, angle ε − λ can be
chosen as an odd function with period 180°.

The Ginzburg III projection is a pseudoazimuthal map-
ping, which uses radius function of Ginzburg’s azimuthal
projection (Sec. XI.3):

ϱ = 3Rsin
δ
3

Since ε − λ is a periodic odd function, Ginzburg pro-
posed the formula �ε−�λ = f (δ) sin(κλ). If κ = 1, the period

* For example, the Hill projection, a generalization of the Eckert

IV projection, is one of the best projections for the equal-area represent-
ation of the Earth.

† If we release our expectation of symmetry, it is possible to construct
an equal-area pseudoazimuthal. For example, the Wiechel projection is
both equal-area and equidistant in meridians, but has no cartographic
value because of its significant angular distortions and lack of symmetry.

is 360° and the projection has a single symmetry; in the
case of κ = 2, the period is 180°, so it is symmetrical about
the horizontal axis. Substituting Ginzburg’s proposal for
f (δ): �ε = �λ− d( δ

δB

)q
sin(κλ)

Here, q is 1 or 2, controlling the change in the curvature
of meridians, 0·002 ≤ d ≤ 0·2 is the magnitude of the
curvature of meridians, and δB is the bounding colatitude.

The projection was published in 1952, its isocols are
oval, recommended for areas of this shape. Since it shows
the vicinity of the metapole favourably, it is not commonly
used in normal aspect. It is used in first transverse and
simple oblique aspect on Russian maps of the Atlantic
Ocean (Fig. XXV.3). On maps of the European part of
Russia, we find the version equidistant in the central me-
ridian (ϱ = R�δ) in simple oblique aspect. It has also been
used for world maps (without Antarctica) in skew aspect.
Due to language barriers and complexity, it could not be
widespread outside the former Eastern Bloc countries.

(a) Normal

(b) Simple oblique (Atlantic Ocean)

Figure XXV.3: Ginzburg III projection
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Lesson twenty-six

Polyconic projections

XXVI.1 Properties of polyconic

projections

We know that the environment of a parallel can be fa-
vourably represented in conic projections. Let us map
the small environment of each parallel with a tangent
perspective conic projection. By refining the infinitesimal
partitions, the gaps between the conic projections become
infinitely small, yielding a polyconic projection as a limit
(Fig. XXVI.1).

Refinement

Taking limit

Figure XXVI.1: Origin of polyconic projections

Let us examine the resulting projection. Each paral-
lel is mapped in its corresponding tangent perspective
conic projection. In Sec. XV.2, we calculated that these
mappings map the tangent parallel to an arc of radius
ϱ = Rcotϕ, so our projection has circular parallels. In
order to stitch the maps, the mapped spherical zones had
to be translated vertically, so the mapped parallels are not
concentric, so it is not a pseudoconic projection. On the
other hand, linear scale in the direction of the meridians
is unit on the tangent parallels of the perspective conic
projections, so the seamlessly fitting central meridian is
certainly equidistant.

Although it would follow from the derivation that the
parallels are equidistant, this is not always required in
practice. Similarly, the radius function can be multiplied
by a constant Sn and the linear scale along the central
meridian by a constant Sm to fine-tune the distortions,
although these are usually chosen to be 1. Accordingly,
we call polyconic projections those mappings in which the
parallels are arcs of circles, their radii are proportional to
the cotangent of the latitude, and they divide the central
meridian evenly.

Expressing the same mathematically using the polar
coordinates of Sec. XXV.1:

ϱ = SnRcotϕ

c = SmR�ϕ + ϱ

If the above condition is not satisfied by a projection
that maps parallels to eccentric arcs, the mapping is clas-
sified as a pseudopolyconic projection. The distortions of
both polyconic and pseudopolyconic projections can be
computed from the general formulae for projections with

circular parallels. The polyconic projections are suitable
for areas extending along a meridian. Although trans-
verse cylindrical projections are also appropriate for this
purpose, it was easier to construct the circular parallels
of polyconic projections with a pair of compasses.

As polyconic projections are more commonly used on
regional maps, they are rather used with an ellipsoid as
the reference frame. The definition of polyconic projec-
tions is then slightly modified:

ϱ = SnN (Φ)cotΦ

c = ϱ+ Sm

ΦU
0

M(Φ)dΦ

XXVI.2 American polyconic

Specifically, for the mapping known as the simple, the
ordinary, or the American polyconic projection, we expect
the previously mentioned equidistancy of parallels (k =
1):

ϱ

Rcosϕ
�ε

�λ
= 1U

dε =
U

cosϕ
Sn cotϕ

dλ

�ε =
�λsinϕ
Sn

+ f (ϕ)

Due to the symmetry about the central meridian, the
constant of integration f (ϕ) is zero. The projection
formulae are indeterminate at the Equator, but here,
y = 0 and the from the equidistant parallels (and hence
equidistant Equator), x = R�λ. Distortions of the projec-
tion:

h =
1

Rsinϑ

(
dc
dϕ

cosε −
dϱ
dϕ

)
=

(
Sm −

Sn
sin2ϕ

)
cosε+ Sn

sin2ϕ

sinϑ

cotϑ =
ϱ �ε�ϕ + dc

dϕ sinε

dc
dϕ cosε − dϱ

dϕ

=
�λcotϕ cosϕ +

(
Sm −

Sn
sin2ϕ

)
sinε(

Sm −
Sn

sin2ϕ

)
cosε+ Sn

sin2ϕ

Since hk sinϑ , 1 and cotϑ , 0, the projection is aphy-
lactic. The formulae and Fig. XXVI.2 show that the distor-
tions worsen rapidly away from the central meridian.

The formula for the ellipsoidal version is given by the
equidistant parallels:

�ε =
�ΛsinΦ
Sn
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XXVI. Polyconic projections

(a) Normal

(b) Oblique transverse (Northern Pacific Ocean)

Figure XXVI.2: Ordinary (American) polyconic

The idea of the polyconic projection was introduced in
1825 by Hassler, a Swiss geodesist who had migrated to
America. The projection quickly caught on in the USA,
continental maps were produced in it, and between the
two world wars it was even used for topographic maps. At
Deetz’s suggestion, it appears also in oblique transverse
aspect, suitable for areas of large east-west extent.

The American polyconic is similar to the modified poly-
conic projection of the French geodesist Lallemand, which
was used for the International Map of the World with
Clarke 1880 ellipsoid as the reference frame between
1911 and 1962. Each section is mapped in its own map-
ping like the polyhedric projection.

For ease of construction, only the round 4° parallels
bounding the sections are expected to be equidistant,
with meridians running straight between them. The
central meridian, unlike the polyconic projections, is not
equidistant, instead the formula for c is determined by the
condition that the meridians at two thirds of the bound-
ing meridian (±2° in the spherical zone up to ±60°, ±4°
up to ±76°, and ±8° up to ±84°) are equidistant. The hard-

to-compute mathematical description of the mapping ori-
ginally described as a construction is given in App. L.

XXVI.3 Rectangular polyconic

Our goal now is the perpendicular graticule (cotϑ = 0):

ϱ �ε�ϕ + dc
dϕ sinε

dc
dϕ cosε − dϱ

dϕ

= 0

SnRcotϕ
�ε

�ϕ
= −

(
SmR−

SnR

sin2ϕ

)
sinεU

1
sinε

dε =
U
Sm
Sn

−sinϕ
cosϕ

− −1
sin2ϕ cotϕ

dϕ

lntan
ε
2

=
Sm
Sn

lncosϕ − lncotϕ + lnf (λ)

tan
ε
2

= f (λ)cos
Sm
Sn ϕ tanϕ

Here, the constant of integration f (λ) is arbitrary. For
example, let latitude ϕs be equidistant!

ϱ

Rcosϕs

�ε

�λ
= 1U

dε =
U

cosϕs
Sn cotϕs

dλ

�ε =
sinϕs
Sn

�λ
tan

ε
2

= tan
λsinϕs
2Sn

f (λ)cos
Sm
Sn ϕs tanϕs = tan

λsinϕs
2Sn

f (λ) =
tan λsinϕs

2Sn

cos
Sm
Sn ϕs tanϕs

The equations are indeterminate at the Equator, but
here y = 0 and x = 2SnRf (λ). From this, we get that the
Equator is equidistant if:

f (λ) =
�λ
2Sn

If the projection is rectangular, could not we choose
an f (λ) that makes the projection conformal? Unfortu-
nately, substitution into the equation h = k does not give
a solution,* there is no conformal polyconic projection.†

This projection was used rather in its ellipsoidal form:

tan
ε
2

= f (Λ) sinΦ
[
N (Φ)cosΦ

a

] Sm
Sn
−1

Where the mapping obtained by choosing Sm = Sn =
1 and f (Λ) = �Λ/2 (the latter provides the equidistant
Equator) is known as the War Office projection. This projec-
tion is also aphylactic, with a true-scale central meridian
(Fig. XXVI.3).

* However, a chosen parallel ϕs can be made conformal by this
method. This idea comes from the British geodesist McCaw.

† Unfortunately, the transverse stereographic projection is also called
the conformal polyconic projection. However, besides being an azi-
muthal mapping, it cannot be called polyconic simply because, although
ϱ = cotϕ is satisfied, its central meridian is not equidistant.
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XXVI. Polyconic projections

Figure XXVI.3: War Office projection

The War Office projection was first mentioned in the
USA in 1853 as an improvement on the ordinary poly-
conic projection. Nevertheless, it was popularized by
British military topography, hence its name. Its graticule
is very easy to construct with a pair of compasses.

Canadian cartographers mapped their country in Lam-

bert conformal conic projection with Φ1 = 49°, Φ2 = 77°.
As is well known, this projection is not conformal at
the pole, and at high latitudes its areal distortion ap-
proaches infinity. Therefore, another projection had to be
chosen to represent the northern part of Canada (Φ > 80°).
Bousfield selected the rectangular polyconic projection.
In order to fit the map to the adjacent parts using the conic
projection, Sn ≈ 1·1164 and Sm ≈ 1·0211 were given, and
a function f (Λ) had to be picked that would provide the
same constant linear scale k(Φ = 80°) ≈ 1·0211 along the
boundary as the conic projection. The projection formulae
of the graticule originally described as a construction
were given by Haines.

XXVI.4 Equal-area polyconic

It occurred to the German cartographer Maurer in 1935,
while he was working on the taxonomy of map projections,
that no equal-area polyconic projection was known. So he
went ahead to fill the gap in the market and this mapping
was born.

We assume that p = 1:

ϱ

R2 cosϕ
�ε

�λ

(
dc
dϕ

cosε −
dϱ
dϕ

)
= 1U

SnRcotϕ
R2 cosϕ

[(
SmR−

SnR

sin2ϕ

)
cosε+

SnR

sin2ϕ

]
dε =

U
dλ(

SmSn
sinϕ

− S2n
sin3ϕ

)
sinε+

S2n
sin3ϕ

�ε = �λ+ f (ϕ)

ε cannot be expressed from the equation above, we have
an implicit function. The constant of integration f (ϕ) is
zero, otherwise the symmetry of the projection would not
be guaranteed.

The projection shown in Fig. XXVI.4 is not only rather
difficult to compute, it is among the worst possible choices
for a world map, but it is surprisingly favourable for
representing narrow areas extending along a meridian.
It is interesting that along the Equator, expression of
coordinate x requires the solution of a cubic equation
(x3/6SnR

2 + Smx −R�λ = 0). Maybe also this is why no one
uses it?

Figure XXVI.4: Equal-area polyconic
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Lesson twenty-seven

Pseudopolyconic projections

XXVII.1 Lagrange projection

Let us start with the Mercator projection equidistant
along the Equator! Reduce the map by a scale factor
κ, then project it back to the sphere using the inverse
Mercator projection. On the new sphere, the latitude is
denoted by ψ and the longitude by ζ:

lntan
(
45° +

ψ

2

)
= κ lntan

(
45° +

ϕ

2

)
ζ = κλ

It can be seen that the parallels are mapped to parallels
on the new sphere, while meridians are also mapped to
meridians. If κ < 1, then the map will not fill the entire
surface of the new sphere. Nevertheless, the mapping
is conformal, since both the Mercator projection, its
inverse, and the scaling are conformal.* From the formula
above, ψ can be expressed, but in practice the following
equivalent formula is used instead:

ψ = arcsin
(1+ sinϕ)κ − (1− sinϕ)κ

(1+ sinϕ)κ + (1− sinϕ)κ

One can consider this transformation as a conformal
variant of the Umbeziffern on the sphere. That is, if we
substitute the renumbered coordinates ψ and ζ for ϕ and
λ in a conformal projection, the mapping remains con-
formal. As an example, let us choose the transverse ste-
reographic projection. Substitute ϕ0 = 0° in the formula
from Sec. X.5 and then renumber the graticule:

x =
2R
κ

sinζ cosψ
1+ cosψ cosζ

y =
2R
κ

sinψ
1+ cosψ cosζ

Here, the division by κ is not necessary, only the reduc-
tion in areas due to the scaling of the Mercator projec-
tion was compensated by scaling it back. Since the ste-
reographic projection preserves circles, the renumbered
graticule lines (which do not wrap around the entire
sphere due to the renumbering) are mapped to arcs of
circles. The set of projections that map all the graticule
lines to arcs of circles is called the Lagrange projection
family. They were significant because it was easy to con-
struct them with a pair of compasses. Since the mapped
parallels are usually not concentric in such projections,
and their radius function is not proportional to the cotan-
gent of the latitude, they belong to the pseudopolyconic
projections.

* According to an anecdote, Gilbert created a conformal globe that
used κ = 1/2 to represent the surface of the globe on a hemisphere so
that each continent was represented twice on the entire globe. It is said
that he regularly teased colleagues who came to see him to check if they
noticed anything unusual about the globe, but almost no one noticed
anything despite the large areal distortions of the transformation.

The particular mapping just derived is called the Lag-

range projection. Its significance is that it is the only
existing conformal pseudopolyconic projection.† The pro-
jection is not conformal at the poles, the mapped angle
formed by the meridians starting here is κ times the ori-
ginal difference in longitude; the linear scale here is infin-
ite for κ < 1 and zero for κ > 1. For κ = 1, the renumber-
ing does not change anything, so the projection remains
transverse stereographic. The choice κ = 1/2 represents
the Earth in a circle (Fig. XXVII.1). The projection was
derived by Lambert in 1772 and generalized for the ellips-
oid by the French mathematician Lagrange in 1779. The
ellipsoidal version of the projection is easily obtained by
choosing the ellipsoidal Mercator projection instead of
the spherical one, but after rescaling, projecting back to a
sphere by using the spherical inverse. The version κ = 2
in second transverse aspect (mapped parallels are con-
focal ellipses, mapped meridians are hyperbolae) is called
the Littrow projection‡ after the Austrian astronomer
who created it, and has been known since 1833.

XXVII.2 Maps with circular graticule

Let us examine the general formulae of the Lagrange

projection family. The mapped parallels are eccentric
circles, their radius is ϱ, and their centre is on the positive
half of the axis y at a distance c. The radius of the mapped
meridians is r, their centre is on the axis x at coordinate
d. In Fig. XXVII.3, for the right triangle bounded by the
two axes and the section s:

s =
√
c2 + d2

tanσ =
−d
c

To calculate σ , the function atan2 is recommended. In
the red triangle, all three sides are known, so the law of
cosines can be written for the angles σ + ε and µ. Since
µ = 90°− (σ + ζ), we can write sin(σ + ζ) instead of cosµ.

† This claim has been proved by Adams, and is omitted because of the
complexity of the derivation. In fact, if we allow a vertical translation
in the Mercator projection before projecting back, the mapping can
be further generalized: the conformality and the circular shape of the
graticule lines are preserved, but the another parallel is mapped to a
straight line instead of the Equator.

‡ The Littrow projection is a real curiosity. Although we have de-
rived it as the second transverse aspect of another projection, its formulae
(x = Rsinλ/cosϕ, y = Rcosλ tanϕ) are no more complicated than that
of the normal aspect. So which aspect is normal? Since Littrow first
derived the one shown in the figure, we can legitimately consider it as
normal and the Lagrange projection of choice κ = 2 as the first trans-
verse of the Littrow projection. But then we can no longer classify it as
a pseudopolyconic projection, because in normal aspect, its graticule
lines are ellipses and hyperbolae!
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XXVII. Pseudopolyconic projections

(a) κ = 1/2

(b) κ = 3/4

(c) κ = 2, second transverse (Littrow projection)

Figure XXVII.1: Lagrange projection

From these, we can easily express the unknown angles ε
and ζ:

r2 = s2 + ϱ2 − 2sϱcos(σ + ε)

ε = ±arccos
s2 + ϱ2 − r2

2sϱ
− σ

ϱ2 = s2 + r2 − 2sr sin(σ + ζ)

ζ = ±arcsin
s2 + r2 − ϱ2

2sr
− σ

From the figure, x and y can be calculated:

x = ϱ sinε

y = r sinζ

The earlier such projections belonged to the globular
projections known from Sec. XX.2, i.e. they mapped the
hemisphere into a circular frame. For example, the Nico-

losi projection is an improvement of the Apian I projec-
tion, in which he replaced straight parallels by arcs of
circles that intersect not only the meridian but also the
circumference evenly. When applied to a hemisphere, the
projection has favourable distortions, approaching the
transverse azimuthal equidistant, and was therefore often
used before the advent of computers. When extended to
a full sphere, it represents the Earth in an apple-shaped
frame (Fig. XXVII.2).

Figure XXVII.2: Nicolosi projection (globular projection is in red)

Based on the globular projections, German carto-
grapher van der Grinten, living in the USA, created
two pseudopolyconic projections for the publisher Rand
McNally.* Of these, only projection I, created in 1898,
has been widely disseminated. This projection shows
the entire surface of the sphere in a circular outline. Al-
though the areal distortion of the aphylactic projection
is very significant, even National Geographic used this
mapping before the Robinson projection. Because of the
large areal distortion, the map is difficult to fit on a sheet
of A/4 paper, so high latitudes are often cut off, losing the
only advantage, the circular frame of the projection. It is
a juicy bit of map projections that the rectangular map

* Four projections are mentioned in the literature, but the van der

Grinten II and III projections were in fact created by Bludau, modifying
projection I. Projection IV, like the Nicolosi projection, maps the
hemisphere into a circular frame.
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XXVII. Pseudopolyconic projections
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(a) Geometry of circular graticules

x

y

r
−d

R�λRπ

(b) Meridians
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y

Rπ
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t
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2R�ϕ

Rπ+
√

(Rπ)2 − (2R�ϕ)2
2Rπ − 2R|�ϕ|2R|�ϕ| χ

(c) Parallels

Figure XXVII.3: Construction of the Van der Grinten I projection

frame is often filled with repeated areas beyond longitude
180°, thus completely eliminating the only possible sense
of projection.

Mapped meridians are arcs of circles centred at (d,0):

(x − d)2 + y2 = r2

The frame of the projection is a circle of radius Rπ, the
Equator is equidistant. Hence, d = R�λ− r. Furthermore,
the meridians pass through the point (0,Rπ):(

0+ r −R�λ)2 + (Rπ)2 = r2

r = R
�λ2 +π2

2�λ
The parallels are mapped to arcs of circles centred at

(0, c):
x2 + (y − c)2 = ϱ2

The parallels intersect axis y at the point y = t, the con-
struction of which is shown by a red dashed line in the
figure. Since the framing circle has radius Rπ, the point
2R�ϕ from axis x is

√
(Rπ)2 − (2R�ϕ)2 from axis y. Express-

ing the ratio between the legs of the two similar right

triangles with red dashed hypotenuses, then expanding
the fraction by π −

√
π2 − (2�ϕ)2:

t
Rπ

=
2R�ϕ

Rπ+
√

(Rπ)2 − (2R�ϕ)2

t = Rπ
2�ϕ[

π −
√
π2 − (2�ϕ)2

]
π2 −π2 + (2�ϕ)2

= Rπ
π −

√
π2 − (2�ϕ)2

2�ϕ
From the arrangement, c = t + ϱ. The sine of the angle

χ is q/Rπ, while this is also the ratio between the two
legs of the smaller right triangle with a continuous green
hypotenuse. Then from the two similar triangles:

sinχ =
q

Rπ
=

2R�ϕ
2Rπ − 2R|�ϕ| = �ϕ

π − |�ϕ|
The parallels intersect the framing circle at

(Rπcosχ,Rπ sinχ). From this, ϱ can be expressed:

R2π2 cos2χ+ (Rπ sinχ − t − ϱ)2 = ϱ2

ϱ =
t2 − 2Rπt sinχ+R2π2

2Rπ sinχ − 2t

Note that the inversion of the previous formula for t
yields �ϕ = π2Rt/(t2 + R2π2), which may be substituted
through sinχ to simplify the formula for ϱ:

ϱ =
R3π3 − |t3|
2t2

sign t

Once all data for the circles (c, ϱ, d, r) are known, the
general formulae can be used to compute the projection,
which is depicted in Fig. XXVII.4.

Figure XXVII.4: Van der Grinten I projection

98



XXVII. Pseudopolyconic projections

XXVII.3 Further pseudopolyconics

Soviet cartography used pseudopolyconic projections to
represent both the Soviet Union and the entire Earth.
The Ginzburg IV–VII and IX projections stand out be-
cause they were widespread. These mappings were hand-
drawn as described in Sec. XXIV.2, with the distortions
prescribed at certain points. The projections were given in
a tabular form, the approximate formulae used today were
supplied by Turkish cartographers İpbüker and Bi̇ldi̇ri̇ci̇

based on the calculations of the American Voxland.
For a better representation of the Soviet Union, the

central meridian was shifted eastwards and the points
of favourable distortions were defined at high latitudes
(around 48-52°, depending on the version). These pro-
jections are among the most favourable ones for world
maps. Their disadvantage is the unusual map frame seen
in Fig. XXVII.5, which was addressed by cropping a little
from the top and bottom of the map at the poles and con-
tinuing the representation beyond the bounding meridian,
completely filling the rectangular map frame. They were
used in encyclopaedias and school atlases in the countries
of the Eastern Bloc, and have been swept away by modern
GIS.

(a) Projection V

(b) Projection VI

Figure XXVII.5: Examples of pseudopolyconics by Ginzburg

Pseudopolyconic projections also include rectangular
mappings (not necessarily conformal) and equal-area pro-
jections. Their applications for regional maps of middle
latitudes were investigated by Györffy and for world
maps by Kerkovits. Research has shown that this projec-
tion family is very flexible for the area to be mapped, and
that their potential is still unexploited.

XXVII.4 Polyazimuthal projections

In addition to the pseudoazimuthal projections, there
are also projections where the mapped parallels are full
circles, but not concentric. Such projections are called
polyazimuthal. For these projections, the general proper-
ties described in Sec. XXV.3 also hold, i.e. the conform-
ality at the pole and the periodicity of the function ε −λ.
In contrast to pseudoazimuthal mappings, there is no
polyazimuthal projection which is symmetric about the
horizontal axis: this would imply the concentricity of par-
allels. Among polyazimuthal mappings, there are equal-
area and rectangular graticules, but there is no conformal
one.* The definition of polyazimuthal projections was es-
tablished in 1989 by the Russian cartographer Tolstova,
but few other people than the author have explored them.
They can be recommended for highly asymmetrical areas
at high latitudes (Fig. XXVII.6).

* Solving the equation of conformality among polyazimuthal projec-
tions, we obtain the oblique stereographic projection, but in a complic-
ated way. That is rather like a conical projection, isn’t it?

Figure XXVII.6: Rectangular polyazimuthal projection of Kerko-
vits for the Northern Atlantic Ocean
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Lesson twenty-eight

Modified azimuthal projections

XXVIII.1 Aitoff & Hammer projections

At this point, we leave the set of projections that can be
grouped according to the shape of the graticule. Map-
pings that do not fit into the previously established cat-
egories are purely and simply categorized as miscellaneous
projections. Since these projections do not have any com-
mon properties, their distortions can only be calculated
using the general formulae learned in Sec. VII.1–VIII.4.
The most commonly used of such projections can all be de-
rived from azimuthals by some previously known method
(e.g., Umbeziffern, blended projection).

It is well known that the azimuthal equidistant has very
favourable distortions for the aphylactic representation
of a circular area, including the hemisphere. However,
the same mapping is obviously not used to represent the
whole Earth. Since the favourable part of the transverse
azimuthal equidistant is the hemisphere at the centre of
the projection, the projection cries out for an Umbezif-
fern. The derivation and the formulae of the transverse
azimuthal equidistant can be found in Sec. XI.1:

x = Rarccos(cosϕ cosλ)
sinλcosϕ√
1− cos2ϕ cos2λ

y = Rarccos(cosϕ cosλ)
sinϕ√

1− cos2ϕ cos2λ

We want to map the longitude range ±180° of the en-
tire sphere into the range ±90° of the hemisphere. This
implies that instead of λ, we need to use the renumbered
longitude ζ = λ/2. At the same time, the Equator, which
was originally equidistant, is now half its original length.
To make the Equator longer, coordinate x is multiplied
back by 2:

x = 2Rarccos
(
cosϕ cos

λ
2

) sin λ
2 cosϕ√

1− cos2ϕ cos2 λ2

y = Rarccos
(
cosϕ cos

λ
2

) sinϕ√
1− cos2ϕ cos2 λ2

This mapping was created in 1889 by the Russian car-
tographer Aitov, who lived in France. His name spread
with an incorrect transliteration, so it is known as the
Aitoff projection. Since the original mapping represen-
ted the hemisphere in a circle, after renumbering and hori-
zontal stretching, it is transformed into an elliptical frame
(Fig. XXVIII.1). The central meridian was equidistant in
the azimuthal equidistant, which was not changed by
the transformations because the latitudes were not re-
numbered. The starting point was an aphylactic projec-
tion, which was not changed by the renumbering of the

graticule, and so is the present mapping. The distortions
of the projection are more favourable for a world map
than the similar Apian II projection, but this mapping is
not a pseudocylindrical mapping.

Figure XXVIII.1: Aitoff projection

Following Aitov, the German geodesist Hammer sug-
gested in 1892 that the transverse Lambert azimuthal
equal-area should be treated in the same way. Once again,
the formulae are copied from Sec. XI.2:

x = R
√
2sinλcosϕ√
1+ cosϕ cosλ

y = R
√
2sinϕ√

1+ cosϕ cosλ

We would like to preserve the equivalency, of course. It
is clear that if we use the renumbering ζ = λ/2, all areas
will be reduced to their half. It follows that stretching
the area of the map in either (but not both) directions
by a factor of two will restore equivalency. Since the
longitudes are renumbered by compressing the map in
the horizontal direction, it follows that it makes sense to
stretch in the x direction.

x = 2R

√
2sin λ

2 cosϕ√
1+ cosϕ cos λ2

y = R
√
2sinϕ√

1+ cosϕ cos λ2

The combination of the renumbering and the stretch-
ing preserves areas, the Hammer projection is equal-area.
The projection is very popular, and despite being equal-
area and pointed-polar, it does not have annoying levels
of angular distortion. The Earth is shown in an ellipt-
ical frame similar to that of the Mollweide projection
(Fig. XXVIII.2).

Although the bimeridians run through the pole with
a cusp, and this causes a minor aesthetic problem when
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XXVIII. Modified azimuthal projections

(a) Normal

(b) Simple oblique (Pécsi projection)

(c) Simple oblique, rescaled (Briesemeister projection)

Figure XXVIII.2: Hammer projection

rotating the graticule, it is common to use this projection
in simple oblique aspect. The first such application was
made in 1926 by the Hungarian geographer Pécsi, who
rotated the centre of projection to latitude 25°N so the
favourable distortions fell on the grain-producing coun-
tries. The projection appeared as agricultural maps of
Hungarian school atlases between the two world wars and
can be considered the first oblique non-conical projection
in the world. Among the international examples, we may
mention the Nordic projection of the Scottish cartographer
Bartholomew, centred at 45° N, 0° E. The Briesemeister

projection differs from this only in that the centre is at
10° E and, in order to obtain better angular distortions,
the projection is reduced by a factor of

√
7/8 in the x dir-

ection, and stretched by the reciprocal in the y direction
to preserve areas.

XXVIII.2 Winkel III projection

The Aitoff projection already shows the Earth in a quite
favourable way, but at higher latitudes the angular dis-
tortion is still too large. We are reminded of the wonders
that could be done with the unfavourable sinusoidal pro-
jection by simply blending with another map. Could this

also do some good with our mapping? The Winkel III
(also known as the Tripel) projection is the blend of the
Aitoff projection and the equirectangular projection:

x =
R
2

�λcosϕs + 2arccos
(
cosϕ cos

λ
2

) sin λ
2 cosϕ√

1− cos2ϕ cos2 λ2


y =

R
2

�ϕ + arccos
(
cosϕ cos

λ
2

) sinϕ√
1− cos2ϕ cos2 λ2


The standard parallel ϕs of the cylindrical was pro-

posed by Winkel to be ∼ 50°27′ 35′′ , like his other projec-
tions, but in practice, the choice ϕs = 40° was adopted at
Bartholomew’s suggestion.

Figure XXVIII.3: Winkel III projection (ϕs = 40°)

This aphylactic projection dates from 1921. Applied to
a world map, it is the least distorted of the common pro-
jections (Fig. XXVIII.3), and is very favourable, especially
for geographic maps.* This mapping started to spread rap-
idly first in Central Europe, and is now among the most
popular projections worldwide. More recently it has dis-
placed the Robinson projection on National Geographic
maps. Its only drawback is being flat-polar.

XXVIII.3 Wagner’s modified

azimuthals

The derivation showed that the Hammer projection can
be understood as an Umbeziffern version of the transverse
Lambert azimuthal equal-area. In Sec. XXIII.3, it was
deduced that the equal-area Wagner transform can be
expressed in general by the functions ψ = arcsin(msinϕ)
and ζ = nλ. The Hammer projection can then be obtained
by choosing m = 1 and n = 1/2. Of course, other values
for n can be chosen to obtain additional equal-area projec-
tions. If we do not insist on pointed poles, we can choose
a number less than 1 for m.

The Wagner VII projection shown in Fig. XXVIII.4 is
an equal-area mapping with very favourable distortions.

* The fact that a projection has low distortion does not mean that
it should be applied here, there, and everywhere. Unfortunately, this
mapping is also found in time zone maps (where meridian convergence
is confusing), thematic maps of global relations (where you cannot
properly connect America to Asia) and school atlases (where you should
not apply a flat-polar projection). That being said, rather this otherwise
favourable mapping should be used beyond its merits than, say, the van

der Grinten I projection. . .
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XXVIII. Modified azimuthal projections

(a) Projection VII (b) Projection IX

Figure XXVIII.4: Wagner’s Umbeziffern transverse azimuthal projections

Wagner’s goal was to make the length of the pole line
approximately half that of the Equator, so he renumbered
the latitudes so that the Pole was mapped to latitude
65°. Hence, m = arcsin(65°). Furthermore, Wagner multi-
plied the longitudes by n = 1/3. He restored equivalency
as usual by multiplying both coordinates with 1/

√
mn.

The projection is one of the best among equal-area world
maps, but its strong disadvantage is the concave, curved
pole-line. Although it was created in the early 20th cen-
tury, its popularity only started to grow in the 21st cen-
tury.

Similarly, for the transverse azimuthal equidistant, the
Aitoff projection is not the only possibility, but here we
would like to preserve the equidistant central meridian.
Therefore, we use the simpler function ψ = mϕ to re-
number the latitudes. In the Wagner IX projection, the
goal is to achieve a similar appearance to the Winkel III
projection, which was popular at that time. This can be
achieved by choosing m = 7/9 and n = 5/18. The stretch-
ing in the y direction is constrained by the equidistant
central meridian (1/m), but in the x direction we choose
only 0·88/n. The projection has favourable distortions
but has an unusual frame. It has a very low popularity.

XXVIII.4 Retroazimuthal mappings

The Littrow projection discussed in Sec. XXVII.1 has
already been of much interest from a theoretical point
of view, and we now highlight its practical usefulness.
In this projection, if a point is connected to any point of
the central meridian then the inclination of the section
is equal to the azimuth of the orthodrome connecting
the two points. While azimuthal projections preserve
the azimuth of the orthodromes starting from the centre
of projection, mappings which show the azimuth of the
orthodromes going back to the centre are called retroazi-
muthal projections. Such projections are suitable for navig-
ational (which way to turn the ship to return to the centre
of projection) or telecommunicational (which way to turn
the antenna to see the tower at the origin) purposes.

We see an interesting application of retroazimuthal pro-
jections in Muslim culture, where it is important to read
the direction to Mecca correctly. Here again, the back
azimuth of the orthodrome is sought. The problem has

given rise to several projections. In the Craig projection,
the meridians are equal-spaced vertical lines, so the azi-
muth to Mecca can be read with respect to any meridian
(Fig. XXVIII.5). The Hammer retroazimuthal projection
is equidistant in orthodromes starting from the origin.
Known retroazimuthal projections have significant distor-
tions and, because of overlapping, generally cannot rep-
resent a large area, and are therefore only recommended
for special map themes. Retroazimuthal projections can
be replaced by the more favourable oblique stereographic
projection, but in the latter case the back azimuth to the
metapole is measured relative to the curved meridians
and not to the vertical direction.

Figure XXVIII.5: Craig projection centred on Mecca

XXVIII.5 Projections of Raisz
The flat map sheet not only distorts the surface of the
Earth, but also gives the reader the false impression that
the continents on the spherical surface are actually flat.
However, some projections, including the orthographic
one, are particularly well suited to show the three-dimen-
sional sphere. Raisz, a Hungarian cartographer living in
America, believed that the orthographic projection could
be considered distortion-free, since one sees the mapped
image spatially, as if looking at a globe.

102



XXVIII. Modified azimuthal projections

A major disadvantage of orthographic projection is that
it cannot represent an area larger than a hemisphere.
Raisz has resorted to a trick. He first mapped the sphere
onto a variety of surfaces (e.g., very flattened ellipsoid
or bean-shaped manifold). These projections had moder-
ate distortions due to the curvature of the surface being
close to that of the sphere. In a second step, the spherical
surface mapped onto the manifold was presented in an
oblique orthographic projection. The Armadillo projection
became Raisz’s most popular mapping, which maps the
sphere onto the surface of a degenerate torus (doughnut-
shaped solid) as an intermediate surface. In the projec-
tion shown in Fig. XXVIII.6, Antarctica and New Zealand
cannot be represented, all graticule lines are mapped to
arcs of ellipses.

Figure XXVIII.6: Armadillo projection

XXVIII.6 Star projections

Normal aspect azimuthals are suitable for the Northern
Hemisphere, but their distortion is unacceptable in the
Southern Hemisphere. Therefore, it was recommended to
map parts of the Southern Hemisphere in their own pro-
jection with a different central meridian, as in the Goode

projection. The projections thus formed will have a char-
acteristic shape of a star or a flower (Fig. XXVIII.7). In

order to preserve the concentricity of the parallels, the
‘petals’ of the map are chosen to be a pseudoconic projec-
tion (e.g. Bonne projection). The boundary between the
azimuthal and the pseudoconic mappings is not neces-
sarily the Equator, and the pseudoconic projection must
be modified so that the meridians are continuous at the
bounding latitude.

Such projections are suitable for world maps according
to their distortions, but there is a high price to pay for fa-
vourable distortions: discontinuities appear everywhere
throughout the projection, and adjacent areas are moved
away from each other. In general, the more discontinu-
ities there are in a map, the more the distortions can be
reduced. An important rule is to place discontinuities
away from areas of interest (e.g. in the middle of oceans
for an economic map). Such maps can be used with their
unusual frames for decorative and eye-catching purposes,
e.g. on atlas covers, wall maps, emblems, etc. Examples
include the Berghaus, Bartholomew, and William-Ols-

son projections.

Figure XXVIII.7: William-Olsson projection (equal-area)
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Lesson twenty-nine

Exotic map projections

XXIX.1 Conformal projections

So far, we have seen notably few conformal projections.
Could not we discover new conformal mappings by trans-
forming our existing conformal maps using a differenti-
able function R

2→R
2 written in the form u(x,y),v(x,y)?

It is known from Tissot’s theory (Sec. VIII.1) that such
mappings are composed of affine transformations of infin-
itesimal areas, i.e. if the point (x0, y0) is mapped to (u0,v0),
then the image of the point (x0 +∆x,y0 +∆y) very close to
it can be written by a local linear approximation of the
function. This approximation can be decomposed into
the product of the small vector (∆x,∆y) and a matrix, and
a translation of the resulting vector:(

u
v

)
≈

u0 + �u
�x∆x+ �u

�y∆y

v0 + �v
�x∆x+ �v

�y∆y

 =
(
u0
v0

)
+

 �u�x �u
�y

�v
�x

�v
�y

(∆x∆y
)

This mapping is conformal if and only if the matrix
rotates all possible arms by the same angle δ (local simil-
arity transform). That is, the matrix can be decomposed
into a magnification and a rotation. It follows that the
matrix must be equal to the product of a scalar and the
rotation matrix of angle δ:(

scosδ s sinδ
−s sinδ scosδ

)
=

 �u�x �u
�y

�v
�x

�v
�y


It is clear that the equation above can only be satisfied if

the main diagonal of the right matrix has identical values,
while the elements of the anti-diagonal are opposite:

�u

�x
=
�v

�y
and

�u

�y
= −�v

�x

This is known as the Cauchy–Riemann differential equa-
tion, a necessary condition for conformal mappings. The
only problem is if all four partial derivatives are zero:
although the differential equation is satisfied, the original
equation can not be solved for the angle of rotation.

Planar coordinates x,y can be considered as the real
and imaginary parts of a complex number known from
higher mathematics, i.e. the original coordinates can be
described by the complex number z = y+ix, while the new
ones by w = v + iu, where i is the imaginary unit, i2 = −1.
Then w(z) is a complex function C→ C. Assuming that
w(z) is differentiable, applying the chain rule, the formula
for the derivative of sums, and (−i)× i = −i2 = −(−1) = 1:

�v

�y
+ i
�u

�y
=
�w

�y
=

dw
dz

�z

�y
=

dw
dz
× 1

�u

�x
− i
�v

�x
= −i

(
�v

�x
+ i
�u

�x

)
= −i

�w

�x
= −i

dw
dz

�z

�x
= −i

dw
dz
× i

That is:
�v

�y
+ i
�u

�y
=
�u

�x
− i
�v

�x

The Cauchy–Riemann differential equation follows
from the equality of the real and imaginary parts. Each
conformal mapping can be generated from another conformal
projection by a function that is differentiable and has a non-
zero derivative on an open subset of the complex plane. Aston-
ishingly, any (non-constant) differentiable function can
be used to transform an existing conformal projection,
and the result is also conformal; indeed, all conformal
mappings can be obtained from any conformal projection
by using the corresponding differentiable function!*

Any smooth function can be approximated to any pre-
cision by its Taylor polynomial, i.e. any conformal pro-
jection can be approximated by complex polynomials.†

We can approximate, for example, the projection with the
lowest possible distortion, the isocols of which, follow-
ing Chebyshev, is known to follow the boundary of the
area. In this case, it is useful to start with a well-chosen
transverse or oblique stereographic map. For example,
the Miller modified stereographic projection achieves
with a cubic polynomial that the isocols are oval instead
of circular, and can therefore be applied to such areas (e.g.
Africa and Europe, Pacific Ocean). In the topographic
projection of Madagascar, this method is also used to en-
sure that the isocols of the Gauss–Schreiber projection
are not vertical but follow the oblique placement of the
island. Although the method has been known for a long
time and provides much better projections for geodetic
purposes than currently known, it is mostly rejected.‡

Another application is on world maps. It is known that
the sphere is mapped onto a disk by the Lagrange projec-
tion, and the hemisphere by the stereographic projection.
German mathematician Schwarz introduced the possib-
ility of mapping the disk onto any polygon by means of
certain differentiable (i.e. conformal) complex functions.
Although these functions are all brain-racking elliptic
integrals, in the early 20th century, the American math-
ematician Adams and in the 1970s, the New Zealander
geodesist Lee conformally mapped the sphere or the hemi-
sphere into countless shapes (e.g. rectangle, ellipse, tri-
angle, rhombus). Fig. XXIX.1 shows the oldest such pro-
jection by Peirce in 1879, with the Northern Hemisphere
represented as a square. The Southern Hemisphere is

* Real functions that are differentiable are not necessarily differenti-
able as complex functions, but common ones (polynomials, trigonomet-
ric, exponential and logarithmic functions) are complex-differentiable.

† This means that for a polynomial transformation (Sec. XVIII.3)
between two conformal maps, it is preferable to use complex polynomi-
als rather than real ones, because in this way angles are not distorted.

‡ For Hungary, Juhász derived the best conformal map in this way.
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XXIX. Exotic map projections

(a) Miller modified stereographic projection (b) Lee world in ellipse projection

(c) Peirce projection (d) Spilhaus projection (plagal aspect)

Figure XXIX.1: Some conformal non-conical projections

mapped using the same projection, but is divided into
four congruent parts attached to the sides of the North-
ern Hemisphere. Similar mappings are useful when it is
important that our map fills a certain frame.

It is not enough to have such good fancy conformal
projections, you can end up discouraging students of
projection theory if you rotate such a mapping into plagal
aspect! Spilhaus must have had something like this in
mind when he created his projection to represent the
world ocean in 1979. This is the Adams world in square
projection rotated.

XXIX.2 Polyhedral projections

In the vast majority of cases, our projections map onto a
plane, with a few very rare perspective projections that
may map to a cylinder or a cone. However, these sur-
faces do not effectively approximate the shape of a sphere.

Solids bounded by flat polygonal faces, also known as
polyhedra, can be unfolded to the plane. Because of the
perfect symmetry of the sphere, regular polyhedra, whose
faces are all congruent regular polygons, are the most
important for mapping applications.

In contrast to regular polygons, there are only five reg-
ular polyhedra (Fig. XXIX.2): the tetrahedron, consisting
of four triangles; the hexahedron (cube), bounded by six
squares; the octahedron, containing eight triangles; the
dodecahedron, consisting of twelve pentagons; and the
icosahedron, consisting of twenty triangles.

Figure XXIX.2: Regular polyhedra
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XXIX. Exotic map projections

Projections mapping onto a polyhedron are called poly-
hedral projections, but the term polyhedric projection is
used to describe a pseudocylindrical mapping (Sec. XXI.3)
for the purpose of confusing students. Their idea comes
from Dürer. In addition to their more favourable distor-
tions than usual mappings, they are also advantageous
for making polyhedron models to replace globes. They
have the disadvantage, however, that discontinuities are
created when certain edges are cut while sheets are un-
folded. For polyhedral projections, we expect that the
representation will not break along the edges of the poly-
hedron:

• The inverse images of each polyhedron face, i.e. the
spherical polygons corresponding to tiling of the
polyhedron, must be mapped completely filling the
polyhedron face, so the bounding orthodromes are
mapped to straight lines.

• The lines crossing the edges shall continue at the
corresponding point on the adjacent polyhedron face.

A trivial solution to these complex conditions is the
gnomonic projection, which maps all orthodromes, in-
cluding the inverse images of the polyhedron edges, to
straight lines. The distortions will then be significant at
the polyhedron vertices. Of course, other complicated
mappings can be used, such as the equal-area polyhed-
ral projection. The previously studied complex elliptic
integrals can form not only circles but also regular spher-
ical polygons into planar polygons conformally, so Adams

and Lee have also applied their conformal mappings to
polyhedra.

The significance of the tetrahedron is that it can be
formed into a rectangle by unfolding its sheets, cutting
one sheet into halves and rearranging, making it conveni-
ent for printed maps, but it does not effectively approxim-
ate the sphere. The cube would be better, but its sheets are
difficult to unfold favourably from a cartographic point
of view. The octahedron is considered suitable because
its edges lie on the Equator and on every 90° meridians.
When the central meridian is chosen wisely, the polyhed-
ron is unfolded with cuts only slightly affecting lands.
This results in special butterfly-shaped maps. The idea
originated from the American architect Cahill, who pro-
duced an almost equal-area, a gnomonic, and a conformal
version in 1909 (Fig. XXIX.3). The idea was later de-
veloped further by Keyes and then Waterman with their
composite aphylactic projections.*

The much more spherical dodecahedron can be unfol-
ded with more cuts, and this is even more significant
for the icosahedron. Still, since the icosahedron has the
most faces, Fuller’s Dymaxion projection (Fig. XXIX.4)
from 1954 uses it in plagal† aspect. The mapping is not

* From time to time, the spectacularly favourable distortions of
polyhedral projections are rediscovered and all sorts of tabloid articles
are written about them. Their authors are typically not cartographers.
The media are keen to pick up on these unusual maps as if they were
some sort of ground-breaking novelty and the most accurate maps
possible; but the concept is nearly 500 years old, and it is important to
be aware of their drawbacks (e.g. discontinuities).

† Even for polyhedral projections, the aspect with the simplest de-
scription is considered normal. In general, regular polyhedra are normal
if the pole falls on the midpoint of any edge. Exceptions are the cube,
where in the normal aspect, the pole is at the centre of a face, and the

Figure XXIX.3: Cahill conformal projection

gnomonic, but is equidistant along the edges of the poly-
hedron, though due to the small area of the icosahedron
faces, this has little effect on the map. There are no dis-
continuities in the continents, but this requires cutting
some sheets in halves and rearranging them.

Figure XXIX.4: Dymaxion projection

XXIX.3 Projection analysis

To georeference a map, we need to know the projection of
the map with all its parameters. While this information is
available in the case of topographic maps, such informa-
tion is shallow, if it is available at all, in the map surround
of general maps. Determining the otherwise unknown
projection of a map is called projection analysis.

On large- and medium-scale maps, the suitable map-
pings differ only slightly, so it is less important to accur-
ately determine the projection. The application detect-
proj was developed for such cases, which uses control
points to adjust the parameters of several possible pro-
jections until the projection fits the given points as best
as possible. The application then plots the projections
it considers most likely on the screen. Before making a
final decision, it is worth taking into account the age of
the map: some projections were only popular in certain
eras, while others have only recently been discovered.

octahedron, where pole is mapped to a vertex in normal aspect. The
transverse aspect is not defined for polyhedral projections, but aspects
where the the pole is mapped to a vertex or the midpoint of a face, on an
edge or an angular bisector are highlighted. The name for the general
aspect remains plagal.
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XXIX. Exotic map projections

On small-scale maps, rare projections may occur, but
the characteristics of the graticule are more visible. The
Hungarian Érdi-Krausz has grouped the most common
types so that the projection of the map can be manually
determined with a few measurements. The groups are
shown here with Györffy’s modifications:
1. Parallels are parallel straight lines, meridians are

parallel straight lines.
(a) Equidistant meridians: If the geographical quad-

rangles are squares: Plate Carrée. If rectangles:
equirectangular.

(b) The parallels are dense near the map frame: likely
equal-area cylindrical, the standard parallel may be
determined by measurements.

(c) The parallels are sparse near the map frame: rather
Mercator, but it may also be one of the many
similar perspective mappings.

2. Parallels are parallel straight lines, meridians are
curved.

(a) The meridians are arcs of circles: If a hemisphere
is in a circle: Apian I, or extended to the sphere,
Ortelius. The full globe is in a circle: van der

Grinten III .
(b) The meridians are arcs of ellipses, pointed-polar:

equidistant central meridian: Apian II. Dense par-
allels near the poles: Mollweide or for a hemi-
sphere, transverse ortographic.

(c) The meridians are arcs of ellipses, flat-polar: me-
ridians reach the pole with an acute angle: Ka-

vrayskiy VII. Meridians reach the pole smooth:
equidistant central meridian: Eckert III. Dense
parallels near the poles: Eckert IV

(d) The meridians consist of multiple arcs of ellipses:
equally-spaced meridians: Baranyi II. Meridians
are dense near the map frame: Baranyi IV.

(e) The meridians are sinusoids: Pointed-polar: si-
nusoidal. Flat-polar: Equidistant central meridian:
Eckert V. Dense parallels near the poles: Eckert
VI or Kavrayskiy VI (or any other member of the
Mercator series).

(f) The meridians consists of sinusoids and arcs of
ellipses: Goode or Érdi-Krausz.

(g) The meridians are straight: Can be trapezoidal, Col-
lignon or if flat-polar then Eckert I or II. On old
maps, it may also be the polyhedric projection.

(h) Does not fit into any of the previous subgroups:
loximuthal, Robinson, pseudocylindrical projec-
tions given in tabular forms, various rare equal-
area pseudocylindricals (e.g. Kavrayskiy V , Cras-
ter, Putnin, š).

3. Parallels are full circles, meridians are concurrent
straight lines.

(a) Equidistant meridians: azimuthal equidistant.
(b) The parallels are dense near the map frame: likely

Lambert, might also be Ginzburg’s azimuthal. If
they become dense very fast: vertical perspective,
likely orthographic.

(c) The parallels are sparse near the map frame: stereo-
graphic. If they become sparse very fast: gnomonic.

4. Parallels are full circles, meridians are curved:
pseudoazimuthal or polyazimuthal, extremely rare.

5. Parallels are arcs of circles, meridians are concurrent
straight lines. In this group, the equidistant paral-
lels can be determined only by measuring the radius
function and the cone constant.

(a) Equidistant meridians: equidistant conic.
(b) The parallels are dense near the map frame: Poin-

ted-polar: Lambert equal-area conic. Flat-polar:
Albers.

(c) The parallels are sparse near the map frame, poin-
ted-polar: almost surely Lambert conformal conic,
if we are out of luck, it can also be some perspect-
ive conic.

6. Parallels are arcs of circles, meridians are curved.
(a) Parallels are concentric: Almost surely Bonne

or Werner, but if flat-polar, it can be some rare
pseudoconic.

(b) The radii of parallels are proportional to the cotan-
gent of the latitude: Equidistant parallels: ordinary
polyconic. Rectangular graticule: likely War Office.
Straight meridians: modified polyconic. Parallels
are sparse near the pole: transverse stereographic.

(c) Does not fit into the previous ones, but equidistant
Equator: The full globe is in a circle: van der Grin-

ten I. (in the rare projection II, the graticule is
rectangular). A hemisphere is in a circle, the full
sphere is apple-shaped: Nicolosi or van der Grin-

ten IV. Flat-polar: Ginzburg’s pseudopolyconics.
(d) The Equator is not equidistant, but straight: Lag-

range. The Equator is a circle: oblique sterographic.
7. Parallels are hyperbolae, meridians are parallel
straight lines: transverse gnomonic.
8. Parallels are conic sections, meridians are concurrent
straight lines: oblique gnomonic.
9. Parallels are arcs of ellipses, meridians are arcs of

ellipses: oblique ortographic or one of Raisz’s projec-
tions.

10. Parallels are ellipses, meridians are hyperbolae: von
der Mühl projections, most likely Littrow.

11. Other projections
(a) Equator and the central meridian are straight lines,

the full globe is in an ellipse: Equidistant central
meridian: Aitoff. Parallels are dense near the
poles: Hammer.

(b) Equator and the central meridian are straight lines,
a hemisphere is in an circle: Equidistant central
meridian: transverse azimuthal equidistant. Paral-
lels are dense near the poles: transverse Lambert
azimuthal equidistant.

(c) Equator and the central meridian are straight lines,
the latter is also equidistant, pointed-polar: likely
transverse cylindrical.

(d) Equator and the central meridian are straight lines,
the poles are straight: Winkel III.

(e) Equator and the central meridian are straight lines,
the poles are curved: Wagner-transformed azi-
muthals.

(f) Only the central meridian is straight: Some oblique
projection.

(g) Only the Equator is straight: Transverse conic.
(h) No axis of symmetry: Some exotic projection, most

often the Chamberlin.

107



Lesson thirty

Selecting a map projection

XXX.1 Traditional methods

After learning about so many projections, how do we
choose the right one? To decide, we need to consider the
theme of the map, its purpose (e.g. wall map, atlas sheet,
field use) and the knowledge of the expected audience.

Territorial statistical data, let it be agricultural, demo-
graphic or vegetation, should always be presented in an
equal-area projection! Similarly, thematic maps about
geoscience, on which professionals are expected to meas-
ure areas, in particular geological, soil, and climatic maps
also require an equal-area representation. The correct
presentation of the extent of countries is important on
political and historical maps, but excessive angular dis-
tortion should also be avoided on such maps intended
for a general audience, and therefore no equivalency is
required if large areas are displayed.

Maps intended for field use (tourist, navigation, topo-
graphic, etc.) should always be conformal! To ensure
measurability, we should also make particular efforts to
minimize distortion of the real distances. It is also com-
mon to make measurements of directions on geophysical
(geomagnetism, tectonics) and meteorological (currents,
air pressure) maps, and even at the cost of large areal
distortions, we should insist on conformality!

However, in the examples not mentioned above, es-
pecially for geographic maps, neither equivalency nor
conformality is recommended. A well-chosen aphylactic
projection is always significantly more favourable than
the equal-area or conformal counterpart. Among con-
ical projections, it is difficult to find a better one than
the equidistant mappings in meridians; among the non-
conical projections, there is no rule of thumb, but with
due care, a very favourable mapping can be found. For
atlas maps, we may deviate from the above rules, because
within an atlas it is desirable to show the same areas in the
same projection regardless of the theme, and to choose
similarly distorted mappings for different areas.

Always try to rotate the areas of favourable distortion of
the projection to the most important places for the theme!
For example, when presenting a long railway line or a mi-
gration, the metaequator or metaparallels should follow
the path of the route. To represent effects starting from a
single point (e.g. earthquake, broadcast range of a tower),
the oblique azimuthal equidistant projection is suitable.
For special purposes, we may need a mapping with spe-
cial distortions (e.g. orthodromes appear as straight lines
in the gnomonic projection, circles are mapped to circles
in the stereographic projection). For time-zone maps,
meridians are always needed to be mapped to parallel
straight lines, and for the representation of geographical
zones (agriculture, vegetation, climate) straight parallels

are necessary.
The literacy of the audience is a decisive factor in decid-

ing whether a flat-polar projection with a more favourable
distortion can be used even if areas near the pole appear
in the map. A lower level of education or aesthetic consid-
eration may also be the reason for a rectangular projection.
Regional maps are usually represented in a rectangular
frame, but for a projection representing a hemisphere or
sphere, we are forced to use the frame of the mapping. In
this case, the shape of the map frame may be considered.
Hemispheres are represented in a circle by azimuthal pro-
jections. The globe can also be represented in a circle (e.g.
van der Grinten I), an ellipse (e.g. Mollweide, Aitoff,
Hammer), or a square (e.g. Peirce). However, map frames
of unusual shapes (e.g. Ginzburg’s projections) should be
hidden by cutting off the pole-line and repeating areas
beyond the bounding meridian.

As a general rule of thumb, any conical projection is
suitable for a small area if the undistorted lines pass at
least partially through the area being plotted and the
isocols are nearly parallel to the boundary of the area. In
the case of two standard parallels, it is advisable to place
them between the centre and the boundary of the area to
be represented, such that they are closer to the edge.

The complex process of map projection selection is
supported by manuals. Ginzburg’s atlas of projection
selection recommends mappings with a favourable distor-
tion for the typical atlas maps of Russian world atlases.
The distortions can be checked on the map sketches in the
proposed projections using isocols. Its western counter-
part is Snyder’s album, which presents the projections se-
quentially, with ellipses of distortion and detailed textual
descriptions giving advice on their application. Based on
Snyder’s guidance, Šavrič wrote the application Projec-
tion Wizard, which recommends appropriate mappings
for an arbitrary geographical quadrangle. However, the
latter only selects the best-known projections based on
the rules of thumb described above.

XXX.2 The local distortion value

Once we have defined our requirements for the mapping,
we want to choose the one with the lowest possible distor-
tion among the candidate projections. For this purpose,
it is necessary to characterize the deviation from the dis-
tortion-free state at a point of the map by some measure
(hereafter referred to as local distortion value).

The foundations of this method were laid by the Brit-
ish astronomer Airy in 1861, when he defined the areal
distortion value, i.e. the deviation of p from 1, by the for-
mula ε2p = (p − 1)2 = (ab − 1)2. Taking squares is necessary
to eliminate negative numbers, and differentiability will
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XXX. Selecting a map projection

be important for the calculations, so the absolute value
function would not be suitable. The quotient b/a to char-
acterize the angular distortion is bounded (because if one
arm of the angle falls in the 1st principal direction then
i = b/a ≤ 1). Therefore, Airy substituted its reciprocal into
the formula for angular distortion value: ε2i = (a/b − 1)2.
The missing linear distortion depends not only on the
location but also on the direction,* and Jordan sugges-
ted averaging its deviation from 1 in each direction µ:
ε2l = 1/(2π)

∮
(l − 1)2dµ.

In the map, we want to minimize not only one kind of
distortion but all distortions simultaneously, so to char-
acterize this we need to introduce the concept of total
distortion value. Airy simply measured this by taking the
arithmetic mean of the angular and areal distortion val-
ues, i.e. ε2 = (ε2p + ε2i )/2 = [(ab − 1)2 + (a/b − 1)2]/2. Notice
that the linear distortion value is not included in the for-
mula for the total distortion. The reason is that linear
scale is algebraically related to angular and areal distor-
tions, so they do not provide any additional information
in the evaluation of map distortions. Note that while tak-
ing the average, it is not necessary to give equal weight to
angular and areal distortions if their undesirability is not
equal for the theme. Different weighting was suggested by
Klingatsch. The term leading to the complicated calcu-
lations was only used by Airy to evaluate existing projec-
tions, choosing the simpler form ε2A = [(a−1)2+ (b−1)2]/2
to find the projection with the lowest distortion.

Although Airy’s theory still defines the evaluation of
map distortion today, it has three serious shortcomings:
Kavrayskiy complained that the formulae do not give
equal weight to increases and decreases in area. For ex-
ample, among the equally distorted p = 2 and p = 1/2,
the former has a distortion value of 1, the latter only
1/4. Bayeva has shown that the formulae do not measure
areal and angular distortion on a comparable scale and
therefore give misleading results, especially for weighted
averaging. Györffy showed that Airy’s simpler total dis-
tortion actually tests completely different properties of
the projection than the original version of the measure.
All three shortcomings only occur in the case of large
distortions, so Airy’s formulae can be recommended for
small areas.

To solve these problems, Kavrayskiy proposed the log-
arithm function for the deviation from 1, which over-
comes all three shortcomings. Thus, the recommended
formulae for areal, angular, linear and total distortion
values are respectively:

ε2p = ln2p = ln2(ab)

ε2i = ln2 i = ln2
b
a

= ln2
a
b

ε2l =
1
2π

∮
ln2 ldµ =

1
2π

∮
ln2

√
a2 cos2µ+ b2 sin2µdµ

ε2 =
1
2

[
ln2(ab) + ln2

a
b

]
= ln2 a+ ln2 b

The weighted average of the angular and areal distor-
tions can be calculated also in this case.

* In fact, the angular distortion would also depend on the direction
of the angle arms if we did not require that one of the angle arms be the
1st principal direction of the projection.

XXX.3 The global distortion value

Unlike local distortion value, the global distortion value
expresses the distortions of a projection over an entire
area. Of course, such calculations are only worthwhile if
the distortions are already visible to the naked eye due
to the large extent of the area represented, or if geodetic
measurements are to be made on the map. However,
these two applications have quite different requirements.
Geodesists want their map measurements to be free of
distortion at any point, so the goodness of a projection
is characterized by the extrema of local distortion val-
ues in the area. In contrast, for small-scale maps, locally
outlying distortions (e.g. pole-line) are acceptable, but the
average of the distortions should be minimized. The two
principles were systematized by Meshcheryakov. Follow-
ing him, the former principle is known as the minimax,
the latter one as the variational.

Distortion values of minimax type are useful in geodesy,
and are thus applied primarily to conformal projections.
In this case, the global distortion is the quotient of the
minimal and maximal values of the linear scale. The
existence of the conformal projection with minimum dis-
tortion of minimax type is stated by Chebyshev’s theorem:
For any continuous region of a sphere bounded by a twice
differentiable curve, there exists a conformal projection for
which the ratio of the supremum and infimum of the linear
scale is minimal. The distortion of this projection is constant
at the boundary of the domain. In layman’s terms, the iso-
cols of the best conformal projection run parallel to the
boundary of the domain to be plotted. Although such
projections are more commonly used for topographic pur-
poses, it is interesting to note that Fig. XXX.1 shows the
least distorted conformal projection of minimax type for
the entire sphere. For areas of complicated shape (e.g.
countries), the best mapping for topographic purposes is
approximated by transforming the stereographic projec-
tion using complex polynomials (cf. Sec. XXIX.1).

Figure XXX.1: Eisenlohr projection

The global distortion value of variational type is the
average, i.e. the integral mean, of the local distortions
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XXX. Selecting a map projection

over an area S:*

E2 =
1
S

W
S

ε2dS

In this formula, any local distortion value can be sub-
stituted for ε. In particular, if we substitute Kavrayskiy’s
total distortion value, we call the global distortion value
the Airy–Kavrayskiy criterion. Using the Airy–Kavray-

skiy criterion to classify the existing established projec-
tions, the most favourable mappings for world maps in-
clude the Winkel III, Baranyi IV, Kavrayskiy VII and
Ginzburg’s pseudopolyconic projections, while the worst
mappings include the polyconic projections, van der

Grinten’s projections and the Bonne projection. If equal-
area mappings are required, Wagner-transformed projec-
tions and the Eckert IV projection can be recommended
for world mapping, while among the pointed-polar maps,
the Kavrayskiy V and Hammer projections are relatively
preferable, but the distortion value of equal-area maps is
usually higher than that of the aphylactic ones.

The projection with the lowest global distortion value
of variational type for a certain area S is called the ideal
projection. No one has yet succeeded in solving the second-
order Euler–Lagrange differential equation required to
find the ideal projection. This does not mean that the
ideal projection cannot be approximated by a power series.
Thus, it is only necessary to determine the unknown coef-
ficients of a polynomial such that the global distortion
value is minimal. This can be easily found by numer-
ical methods. An ideal projection can be interpreted not
only for the whole Earth, but also for regions, in which
case the distortion of the projection is minimal only for
the selected area, outside which arbitrary distortions can
occur.

Figure XXX.2: Approximation of the ideal projection

As shown in Fig. XXX.2, the ideal projection of the
whole Earth is not ideal for cartographic purposes. In-
deed, the distortions are surprisingly good, but the map
frame and the mapped graticule are very disturbing,
while they can be important considerations when select-
ing the projection. Following Meshcheryakov, the best

* Some researchers believe that the distortions experienced by the
map reader are not only the result of local infinitesimal distortions,
but that distortions measured on finite shapes should be considered.
However, algebraic relations and statistical tests show that this method
does not yield a fundamentally different measure from the ones of
variational type.

projection is the mapping with the lowest global distortion
value for the represented area within a set of projections
defined by a prescription. The best projection according
to the Airy–Kavrayskiy criterion is known only among
cylindrical projections (this is the equirectangular one),
but according to Airy’s original, simpler criterion, the
best projection is also known among azimuthal and conic
mappings (these are very complex, while for areas smaller
than a hemisphere, they are hardly distinguishable from
the equidistant counterparts).

Among non-conical projections, the formulae of the
best projection can only be approximated numerically by
polynomials. These projections (when the unusual frame
is discarded or clipped) provide unbeatable distortions
for displaying the area. For example, the projection in
Fig. XXVII.6 is the best rectangular polyazimuthal pro-
jection for representing the Northern Atlantic and Arctic
Oceans together; Fig. XXX.3 shows the best equal-area
pseudopolyconic projection for the Indian Ocean. It may
be observed that the favourable parts of such projections
can be concentrated in a selected area, but apart from this
area distortions start to increase rapidly.

Figure XXX.3: Kerkovits flat-polar equal-area pseudopolyconic
projection for the Indian Ocean

XXX.4 Final thoughts

To select the projection correctly, the cartographer applies
all his/her knowledge about the theory of map projection
simultaneously. As you can see, there is no single recipe
for finding the most appropriate mapping. Changing the
projection is done with a few clicks in the appropriate
program (if the desired projection is supported by the
GIS), so it is worth taking the opportunity. Particularly for
younger audience, the responsibility is great because they
do not have the knowledge to correct for distortions; but
a poorly chosen projection can make the interpretation of
a thematic map difficult even for the best professionals.
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Appendix A

Basic mathematical relations

Below are some formulae that can be used for the deriv-
ations in the lecture notes. The identities given here are
not exhaustive, the main focus is on the identities that are
important for cartographers.

Trigonometric identities

sin(−α) = −sinα

cos(−α) = cosα

sin(90°−α) = cosα

cos(90°−α) = sinα

sin(180°−α) = sinα

cos(360°−α) = cosα

tanα =
sinα
cosα

tan(180° +α) = tanα

cotα =
1

tanα
=

cosα
sinα

tan(90°−α) = cotα

sin2α + cos2α = 1

tan2α + 1 =
1

cos2α

1+ cot2α =
1

sin2α
sin(α ± β) = sinα cosβ ± cosα sinβ

sinα = sin
(α
2

+
α
2

)
= 2sin

α
2

cos
α
2

cos(α ± β) = cosα cosβ ∓ sinα sinβ

cosα = cos
(α
2

+
α
2

)
= cos2

α
2
− sin2

α
2

1+ cosα = 2cos2
α
2

1− cosα = 2sin2
α
2

sinα =

(
2sin α

2 cos α2
)/

cos2 α2(
cos2 α2 + sin2 α2

)/
cos2 α2

=
2 tan α

2
1+ tan2 α2

cosα =

(
cos2 α2 − sin2 α2

)/
cos2 α2(

cos2 α2 + sin2 α2
)/

cos2 α2
=
1− tan2 α2
1+ tan2 α2

Logarithmic identities

elna = a

− lna = ln
1
a

lna+ lnb = ln(ab)

lna− lnb = ln
a
b

c lna = lnac

1
c

lna = ln c
√
a

artanhx =
1
2

ln
1+ x
1− x

artanhsinα = lntan
(
45° +

α
2

)
−artanhcosα = lntan

α
2

Derivative and antiderivative functions
The table below should be used so that the function

on the right is the derivative of the left one, and the left
function is the antiderivative of right one with respect to
variable x. After integration, a constant must be added to
the result!

d
dx
→ ←

U
dx

c 0
x 1
cx c

xα αxα−1

xα+1

α + 1
xα

√
x

1
2
√
x

ex ex

lnx
1
x

sinx cosx

cosx − sinx

tanx
1

cos2 x

cotx − 1
sin2 x

lntan
x
2

1
sinx

lntan
(
45° +

x
2

) 1
cosx

arcsinx
1

√
1− x2

arccosx − 1
√
1− x2

arctanx
1
1+ x2

arsinhx
1

√
1+ x2

arcoshx
1

√
x2 − 1

artanhx
1
1− x2
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Derivative of compound functions

d
dx

(f + c) =
df
dx

d
dx
cf = c

df
dx

d
dx

(f ± g) =
df
dx
±

dg
dx

d
dx
f g =

df
dx
g + f

dg
dx

d
dx

f

g
=

df
dx g − f

dg
dx

g2

d
dx
f [g(x)] =

df
dg

[g(x)]×
dg
dx

(x)

df
dx

=
df
dy

dy
dx

d
dx
f −1 =

1
df
dx [f −1(x)]

=
dx
df

Antiderivative of compound functions
In the following formulae, F is the antiderivative of f :U

cf dx = c
U
f dxU

f ± g dx =
U
f dx ±

U
g dxU

f (ax+ b)dx =
1
a
F(ax+ b) + cU

f α
df
dx

dx =
f α+1

α + 1
+ cU df

dx
f

dx = lnf + cU df
dx

1+ f 2
dx = arctanf + cU df

dx

1− f 2
dx = artanhf + cU

f [g(x)]
dg
dx

dx = F[g(x)] + c

U
df
dx
g dx = f g −

U
f

dg
dx

dx

Solving a separable differential equation
If:

g(f )h(x)
df
dx

= 1

Then: U
g(f )df =

U
1
h(x)

dx+ c

Greek alphabet

Aα alpha /al-fah/

Bβ beta /bee-tah/

Γ γ gamma /ga-mah/

∆δ delta /del-tah/

Eϵε epsilon /ep-sigh-lon/

Z ζ zeta /zee-tah/

H η eta /ee-tah/

Θθϑ theta /thee-tah/

I ι iota /i-oh-tah/

K κκ kappa /ka-pah/

Λλ lambda /lam-dah/

Mµ mu /myoo/

N ν nu /nyoo/

Ξξ xi /zaai/
Oo omicron /oh-my-kron/

Ππϖ pi /paai/
P ρϱ rho /roh/

Σσ ς sigma /sig-mah/

T τ tau /taw/

Υ υ upsilon /up-sigh-lon/

Φφϕ phi /faai/
Xχ chi /kaai/
Ψ ψ psi /saai/
Ωω omega /oh-meg-ah/
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Appendix B

Rare formulae in spherical trigonometry

In this appendix, a possible derivation for theorems in
spherical trigonometry that were stated without proof in
Sec. III.1 is given for those who like to find out whether
these statements are true. They are not discussed in the
main text because they are rarely needed, but their deriv-
ation contributes to a deeper understanding of spherical
geometry.

Denote the vectors from the centre of the sphere to the
vertices of the triangle ABC by A⃗, B⃗, C⃗! Let A⃗′ be the unit
vector pointing in the direction of the cross product B⃗× C⃗;
i.e., draw a line through the centre of the sphere perpen-
dicular to the plane containing side a of the spherical
triangle and let the point A′ be that point of intersection
between the line and the sphere, which is closer to A. Use
a similar construction to define points B′ and C′! The
spherical triangle A′B′C′ is called the polar triangle of
triangle ABC (Fig. B.1).

a′

a′

A′

b′

b′

γ ′

α′

c′

c′

β′

c

c

b

b

a

a

β

γ

α

C′B′

A

B

C

Figure B.1: Polar triangle

By definition, B⃗′ is perpendicular to the plane of side
b, i.e., to both vectors A⃗ and C⃗, and C⃗′ is perpendicular
to the plane of side c, i.e., to both vectors A⃗ and B⃗. It
follows that A⃗ is perpendicular to both B⃗′ and C⃗′ , i.e. A⃗ is
perpendicular to the plane containing side a′ subtended
by the latter two. Similarly, the perpendicularity of B⃗ and
b′ as well as C⃗ and c′ can be shown. We have now seen
that the polar triangle of triangle A′B′C′ is the original
triangle ABC.

In Fig. B.2, we have rotated the sphere so that the vertex
A is exactly in the front. Since A⃗ is perpendicular to the
plane of side a′ , from our perspective, side a′ appears just
on the perimeter of the mapped sphere. In the figure,
the blue angle between the plane of side b and B⃗′ and
the green angle between the plane of side c and C⃗′ are

a′
C

A

b

Bc

B′

C′

α

A′

Figure B.2: The polar of angle α

by definition right angles, but they overlap each other at
angle α between the planes of the two sides. It follows
that the subtended angle of a′ is less than the two right
angles (180°) by α. This gives α + a′ = 180°. By similar
reasoning, β + b′ and γ + c′ are also 180°. Since the polar
of the polar triangle is the original triangle, α′ + a, β′ + b,
and γ ′ + c also add up to 180°.

Formulate the spherical rule of cosines proved in
Sec. III.1 for the polar triangle.

cosc′ = cosa′ cosb′ + sina′ sinb′ cosγ ′

The corresponding sides and angles of the original and
the polar triangle add up to 180°, i.e. a′ = 180°−α, α′ =
180°− a, b′ = 180°− β etc. Substituting this:

cos(180°−γ) = cos(180°−α)cos(180°− β)

+ sin(180°−α) sin(180°− β)cos(180°− c)

It is known that sin(180°−δ) = sinδ and cos(180°−δ) =
−cosδ. From this:

−cosγ = (−cosα)(−cosβ) + sinα sinβ(−cosc)

cosγ = −cosα cosβ + sinα sinβ cosc

That is, we have proven the validity of second spherical
rule of cosines.

From the spherical rule of sines presented in Sec. III.1:

sinc
sinγ

=
sina
sinα

sinc =
sinasinγ

sinα
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The spherical rule of cosines applied to both sides c
and a:

cosc = cosacosb+ sinasinbcosγ

cosa = cosbcosc+ sinb sinccosα

Applying the above rules of sines and cosines to the
coloured trigonometric functions:

cosa = cosb(cosacosb+ sinasinbcosγ)

+
sinb sinasinγ cosα

sinα

The third side is cancelled from the equation. The
terms containing cosa are collected on the left-hand side
and then divided by sinasinb:

cosa = cosacos2 b+ sinasinb
(
cosbcosγ + sinγ

cosα
sinα

)
cosa(1− cos2 b) = sinasinb(cosbcosγ + sinγ cotα)

cosasin2 b
sinasinb

= cosbcosγ + sinγ cotα

cotasinb = cosbcosγ + sinγ cotα

This gives the cotangent four-part formula we have been
looking for, which creates a relationship between two
sides and two angles.

Note that, by choosing the two sides of the triangle
differently or by swapping their order on the left-hand
side and rewriting the expression on the right-hand side
accordingly, there are six different forms of this equation.

Only side a and angle α can be expressed directly
from the equation. If we need side b or angle γ , us-
ing relations sinδ = 2 tan(δ/2)/[1+ tan2(δ/2)] and cosδ =
[1 − tan2(δ/2)]/[1 + tan2(δ/2)] (by substituting side b or
angle γ for δ) and after rearranging, we obtain a quad-
ratic equation in tan(b/2) or tan(γ/2), respectively. This
typically has two solutions, but sometimes it gives only
one solution or no solution. In the latter case, no spherical
triangle exists with the given sides and angles.
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Appendix C

Borkowski’s formula for the latitude

Warning, dangerous content ahead! Reading this ap-
pendix is not recommended for the faint-hearted! The
author excludes all responsibility for possible brain dam-
age!

In Sec. IV.3, it was shown that:

z =

√x2 + y2

cosΦ
− e2N (Φ)

sinΦ

From this, we want to express the latitude. First note
that:

1
cos2Φ

=
sin2Φ + cos2Φ

cos2Φ
=

sin2Φ
cos2Φ

+
cos2Φ
cos2Φ

= tan2Φ + 1

Substitute the formula for the prime-vertical radius
of curvature into the original equation, and then start
rearranging! For simplicity, let us use the notation r =√
x2 + y2! The magic is to remove the root sign by moving

it alone to the left-hand side, then squaring both sides;
remove the fractions by multiplying with the denomin-
ators, finally divide by cos4Φ to transform everything to
tangents.

z
sinΦ

=
r

cosΦ
− ae2
√
1− e2 sin2Φ

a2e4

1− e2 sin2Φ
=

r2

cos2Φ
− 2 rz

cosΦ sinΦ
+

z2

sin2Φ

a2e4 cos2Φ sin2Φ = r2 sin2Φ − r2e2 sin4Φ

− 2rzcosΦ sinΦ + 2rze2 sin3Φ cosΦ

+ z2 cos2Φ − z2e2 sin2Φ cos2Φ

a2e4
sin2Φ
cos2Φ

= r2
sin2Φ
cos4Φ

− r2e2 sin4Φ
cos4Φ

− 2rz sinΦ
cos3Φ

+ 2rze2
sin3Φ
cos3Φ

+
z2

cos2Φ
− z2e2 sin2Φ

cos2Φ

a2e4 tan2Φ = r2 tan2Φ(1+ tan2Φ)− r2e2 tan4Φ

− 2rz tanΦ(1+ tan2Φ) + 2rze2 tan3Φ

+ z2(1+ tan2Φ)− z2e2 tan2Φ

[(1− e2)r2] tan4Φ + [(e2 − 1)2rz] tan3Φ

+ [r2 + z2(1− e2)− a2e4] tan2Φ + [−2rz] tanΦ + z2 = 0

If we introduce variable t = tanΦ , we obtain the fol-
lowing quartic equation for the unknown t by denoting
the terms in the square brackets of the above equation by
capital letters:

At4 +Bt3 +Ct2 +Dt +E = 0

The solution to this quartic equation is called the Fer-

rari method. First, introduce a new variable u = t +B/4A

by substituting t = u −B/4A. After substitution, the equa-
tion is divided by A, the parentheses are expanded and
the terms of equal degree in u are collected, and the third-
degree term is eliminated:

u4 +
(
−3B2

8A2
+
C
A

)
u2 +

(
B3

8A3
− BC
2A2

+
D
A

)
u

+
(
−3B4

256A4
+
B2C
16A3

− BD
4A2

+
E
A

)
= 0

The coefficients in parentheses are denoted by Greek
letters:

u4 +αu2 + βu +γ = 0

For any v, it is true that:(
u2 +

α
2

+ v
)2

= 2vu2 − βu + v2 +αv +
α2

4
−γ

This can be checked by expanding the parentheses and
arranging terms on the left-hand side. In this way, v is
cancelled, and the previous equation is obtained. Massa-
ging the right-hand side further:(
u2 +

α
2

+ v
)2

=
(√
2vu −

β

2
√
2v

)2
−
β2

8v
+ v2 +αv +

α2

4
−γ

Since the above equation is true for any v, let us pick
that v for which the green term is exactly zero. Then,
denoting the red term by U and the blue term by V , U2 =
V 2, i.e. U2 −V 2 = 0, so (U +V )(U −V ) = 0, i.e. the next
product is zero:(
u2 +

α
2

+ v +
√
2vu −

β

2
√
2v

)(
u2 +

α
2

+ v −
√
2vu +

β

2
√
2v

)
However, the product can only be zero if at least one

of its factors is zero. From this we obtain two quadratic
equations of u, whose two solutions will be the four solu-
tions of the incomplete quadratic equation. Then, by
definition, the four roots of u also give four solutions to
t, so the quadratic equation is solved. In fact, we would
have solved it if we knew what value we had chosen for v.
The condition was that the green term above should be
zero. Then the green term multiplied by v is also zero:

v3 +αv2 +
(
α2

4
−γ

)
v −

β2

8
= 0

Good heavens! It became a cubic equation! We’ll have
to solve it with the Cardano formula. Let us introduce the
auxiliary variable w = v − (α2/4+γ)/3, i.e. substitute this:
v = w + (α2/4+γ)/3. Then, by expanding the parentheses
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C. Borkowski’s formula for the latitude

and collecting terms of the same degree in w, the second-
degree term is cancelled:

w3 +
[
α2

4
−γ − α

2

3

]
w+

−β28 − α
(
α2

4 −γ
)

3
+
2α3

27

 = 0

In other words, denoting the constant coefficients by
letters:

w3 + Pw+Q = 0

Let w =W +Z! Then, by expanding the parentheses:

W 3 +Z3 + (3WZ + P )(W +Z) +Q = 0

Since we can freely choose one of W and Z, let 3WZ +
P = 0! Then, from the equation above and our condition
(all terms cubed), we get two equations:

W 3 +Z3 = −Q
W 3Z3 = −P 3/27

From the above equations, it follows from Vieta’s for-
mulae that W 3 and Z3 are two solutions of the following
quadratic equation of s:

s2 +Qs − P
3

27
= 0

Solving the quadratic equation:

s1,2 =W 3,Z3 = −Q
2
±

√
Q2

4
+
P 3

27

That is, since w = W + Z, we obtain one root of the
incomplete cubic equation:

w =
3

√√√
−Q
2

+

√
Q2

4
+
P 3

27
+
3

√√√
−Q
2
−

√
Q2

4
+
P 3

27

Do we even remember how we got here? Our linear
substitution thus returns the solution v for the original
cubic equation, from which we now know v in the two
quadratic equations derived from the incomplete quartic
equation. Thus, we now have four solutions u to the
quartic equation, from which we also have solutions for t
of the original quartic equation. And what was that? This
is the tangent of the latitude, which we can use even to
get back the height above the ellipsoid by substituting it
back into the formulae in Sec. IV.3. Phew! Let us have
a nice lemon balm tea and think about the fact that this
huge amount of computing is also done every second in
that little GPS chip in the phone!

In fact, Borkowski did not derive the quartic equation
exactly in the way outlined above. The question is still
an active area of research today, how to obtain a quartic
equation that leads to numerically stable formulae.

117



Appendix D

Vertical datums

3D spatial data are becoming increasingly important in
GIS computing. Therefore, it is no longer generally sat-
isfactory to fit data only horizontally. Thus, although
altimetry and vertical coordinate systems are outside the
scope of map projection theory, the definition of the ref-
erence frame of elevation data is becoming essential in
addition to the projection and geodetic datum. This ap-
pendix is intended to help in understanding this.

When measuring altitude, the shape of the Earth is
considered to be an ellipsoid usually only in the case of
satellite navigation. This is because, on the one hand, it
is difficult to measure altitude above an ellipsoid using
field measurements and, on the other hand, it is not very
useful, since the terrestrial ellipsoid can deviate up to
100 metres from the sea level. For this reason, the use
of elevations above the ellipsoid can lead to erroneous
conclusions, for example, in flood protection applications.
It is therefore preferable to measure altitude relative to
sea level.

Sea level is measured by tide gauges on the coast. Sea
levels are recorded over a number of years to eliminate the
effects of weather and tide. The average of the measured
data on the tidal gauge is the mean sea level.

The sea level at rest is everywhere perpendicular to the
local gravity, and the potential energy along the water
level is constant. Surfaces along which the potential en-
ergy does not vary and is everywhere perpendicular to the
force field are called equipotential surfaces or level surfaces.
Level surfaces never cross each other, but their distance is
not constant: since the gravity is greater at the poles than
at the Equator (due to the effect of centrifugal force), the
same amount of work (gaining the same amount of poten-
tial energy) will result in a smaller difference in height at
the poles than at the Equator. This shows that the level
surfaces are denser near the poles. The level surface that
lies on the mean sea level measured on the tidal gauge
is known as the geoid and is considered to be the shape
of the Earth when measuring altitude (Fig. D.1) A curve
whose tangent at each point is in the direction of gravity
is called a plumb line.

Sea levels are affected by water temperature, salinity
and currents. Therefore, the geoid fixed to a particular
tidal gauge follows the mean sea level only loosely else-
where in the ocean. Therefore, the level surfaces fixed to
the different tidal gauges do not coincide, but the differ-
ence in height between them does not exceed one metre.
In Hungary, until the 1960s, the Trieste (Adriatic height)
and since then the Kronstadt (Baltic height) tidal gauges
have been used as the reference. In the EU, the Amster-
dam height is used when a uniform system between states
is needed. Adriatic heights are 67.5 cm and Amsterdam
heights are 14 cm higher than Baltic heights.

Level surfaces
Geoid

Plumb line (direction of gravity)

Ellipsoid

Figure D.1: The shape and the gravity field of the Earth

The distance along the plumb line between the geoid
and our point is the height above sea level, denoted by
H . The distance between the geoid and the ellipsoid
along the normal of the ellipsoid is the geoid undulation n.
The geoid undulation is positive if the geoid is above the
ellipsoid (as it does in most parts of Europe) and negative
if it runs below it (as in Fig. D.2), its value is usually
between ±100m. The height above the ellipsoid (h) is also
measured along the normal of the ellipsoid. The angle
between the normal of the ellipsoid and the plumb line
passing through our point is called the vertical deflection.*

The figure shows that, given the geoid undulation,
the height above sea level can be estimated from the
height above ellipsoid calculated in satellite navigation
(Sec. IV.3):

H ≈ h−n

There is no exact equality because of the vertical de-
flection, but the deviation is usually less than or equal
to one millimetre, so in practice we do not need to take
this into account (since geoid undulation is rarely known
with such precision).

If you go around a closed curve and add up the differ-
ences in altitude, you would expect to get 0, since you

* Vertical deflection is also important in horizontal systems. The
astronomical latitude is the angle between the local horizontal and the
Earth’s axis of rotation (the North Star), while the geographic latitude
is the angle between the normal of the ellipsoid and the plane of the
Equator. The two latitudes are not the same because, although the
Equatorial plane is perpendicular to the axis of rotation, the local hori-
zontal and the normal of the ellipsoid are not exactly perpendicular just
because of the vertical deflection. The difference is thus precisely the
north-south component of the vertical deflection. Similarly, since we can
determine the astronomical longitude with respect to the local horizontal,
its deviation from the geographic longitude is the east-west component
of the vertical deflection. It can be seen why the regional datums used
for horizontal measurements in Sec. VI.4 were fitted to the geoid by
minimizing the vertical deflection and not the geoid undulation.

118



D. Vertical datums

Surface of Earth

Ellipsoid
Geoid

Height above sea level (H)

Geoid undulation (−n)

Height above ellipsoid (h)

Vertical deflection

Mean sea level

We are here

Figure D.2: Heights above sea level and above ellipsoid

have returned to the same point. So it would be intuitive
if

∮
dH = 0 along any closed curve. This statement would

imply (as common sense would expect) that the sum of the
measured height differences between two given points is
independent of the path. However, life is full of surprises.

Try to determine the heightHC at the peak of the island
marked by C in Fig. D.3. Because of the size of the hill, we
cannot do this in one step, and it is obvious that we will
not dig along the plumb line to the geoid for the sake of
measurement. The group with blue rods will go straight
up from point A to point C, while the group with green
rods will first walk around the coast to point B (not noti-
cing any difference in elevation, so taking the elevation of
B as zero), and then level up to point C. The figure shows
that the green group has measured higher altitude up to
point C, and (even if neither group had made measure-
ment errors) none of the height differences add up to the
height of point C! Of course, this phenomenon is only
significant at very long distances (for national surveys),
but it is difficult to measure the heights of points precisely
based on levelling along different routes.

HC

Level surface of the geoid
(sea level)

C

A B

How high is this island?

E
D

Level surface

Level surface

Level surface

Level surface

Level surface

Measured height
differences

Figure D.3: Surprising properties of height measurements

Nevertheless, we can see that the points D and E are on
the same level surface. This means that these two points

could be on the shore of the same lake, since they are
horizontal to each other. Yet the elevation of point E is
higher than that of point D, i.e. water can flow up from
point D to point E! This is caused by the uneven gravit-
ational field of the Earth: at point E, the level surfaces
are spaced less sparsely. The height difference between
different points of the water level in a mountain lake the
size of Lake Geneva can be up to half metre! This can
cause unpleasant surprises in case of flooding!

Therefore, for large-scale (national) surveys, it is better
to measure the difference in the potential energy per unit
mass (geopotential). The potential K is indeed independ-
ent of the measurement path, but the local gravitational
acceleration gi should always be measured in addition to
the difference in height ∆Hi .

K =
∑
i

gi∆Hi

The measured potential is thus used to obtain the
height:

H =
K
ḡ

ḡ is the average gravitational acceleration along the
plumb line, but again we will not dig down into the
mountain to measure this. In the case of the traditional
geometric definition of height (orthometric height in the
literature), we attempt to model this (often used abroad),
while for normal height we simplify the estimation of ḡ
by assuming the Earth to have an ellipsoidal shape and
uniform mass distribution. Dynamic height assigns the
same height to points on the same level surface, and thus
has a physical meaning. Then the value ḡ is chosen to be
uniform regardless of location. The resulting differences
are of the order of decimetres, and confusion is only prob-
lematic if engineering precision is required. However,
geoid undulation can be up to 100 m, so heights above
the ellipsoid should never be confused with heights above
sea level!

So when entering elevation coordinates into GIS soft-
ware, pay attention to their type (above ellipsoid or sea
level, in the latter case, which type) and their reference
frame (which ellipsoid, which sea level)! The vertical base
points for Hungary are fixed to normal heights from the
Kronstadt tidal gauge. The network of vertical base points
is called the vertical datum. The conversion between the
vertical datums of two countries can be done by a simple
offset if centimetre accuracy is required. However, we
must bear in mind that plate tectonics cause base points to
shift over time, so even between vertical datums of coun-
tries using the same sea level, there may be a difference
of a few centimetres over decades. To convert between
elevations above ellipsoid and sea level, our software also
needs a geoid model to calculate the geoid undulation.
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Appendix E

Alternative derivation of Tissot’s theory

In contrast to the geometric proof presented in the note,
I give an algebraic proof, because this point of view fits
better to the modern approach of differential geometry.
This time, Tissot’s theory is proved only for a surface of re-
volution as the reference frame and a planar image.* First,
consider a coordinate system ∆n,∆m at an arbitrary point
on the tangent plane of the surface of revolution with the
axes in the direction of the parallels and meridians of the
surface of revolution. Since we are considering only the
infinitely small neighbourhood of the point, we can neg-
lect the difference between the surface of revolution and
its tangent plane. The coordinates of a very close point
are (∆n,∆m). This can be estimated from the coordinates
on the surface of revolution (due to the infinitely small
distances and the differentiability of the parametric form,
we can use a linear approximation):

∆n =
dn
dλ

∆λ

∆m =
dm
dϕ

∆ϕ

From this:

∆λ =
∆n
dn
dλ

∆ϕ =
∆m
dm
dϕ

Fig. VII.1 shows that in the plane of projection, ∆x =
∆m′x+∆n′x and ∆y = ∆m′y+∆n′y , i.e., substituting the linear
approximations obtained for them (assuming the differen-
tiability of the map projection as indicated in Sec. VI.2):

∆x =
�x

�ϕ
∆ϕ +

�x

�λ
∆λ

∆y =
�y

�ϕ
∆ϕ +

�y

�λ
∆λ

That is:

∆x =
�x
�ϕ

dm
dϕ

∆m+
�x
�λ
dn
dλ

∆n

∆y =

�y
�ϕ

dm
dϕ

∆m+
�y
�λ
dn
dλ

∆n

Thus, the transformation between the coordinate sys-
tems ∆n,∆m on the surface of revolution and ∆x,∆y in

* The general proof for surfaces not of revolution is possible by
examining the multiplication of so-called metric tensors.

the plane can be described perfectly by the matrix form
of the two equations:

(
∆x
∆y

)
=


�x
�λ

/
dn
dλ

�x
�ϕ

/
dm
dϕ

�y
�λ

/
dn
dλ

�y
�ϕ

/
dm
dϕ


(
∆n
∆m

)

Suppose that the transformation above can be decom-
posed into a composition of a rotation by angle υ, a
stretching of factor a in the horizontal and factor b in
the vertical direction, and then another rotation by angle
ν. The three successive transformations are formulated
as a product of matrices:(

cosν sinν
−sinν cosν

)(
a 0
0 b

)(
cosυ sinυ
−sinυ cosυ

)
The product of the previous transformation matrices:(
acosυcosν − b sinυ sinν asinυcosν + bcosυ sinν
−acosυ sinν − b sinυcosν −asinυ sinν + bcosυcosν

)
The matrix above is assumed to describe the same trans-

formation as the original matrix, i.e. all four elements are
the same:

acosυcosν − b sinυ sinν =
�x

�λ

/
dn
dλ

asinυcosν + bcosυ sinν =
�x

�ϕ

/
dm
dϕ

−acosυ sinν − b sinυcosν =
�y

�λ

/
dn
dλ

−asinυ sinν + bcosυcosν =
�y

�ϕ

/
dm
dϕ

We obtain a non-linear system of four equations and
four unknowns (a,b,υ,ν). Note that the above system of
equations shows (if we find at least one real solution) that
every differentiable projection in the infinitesimally small
neighbourhood of an arbitrary point can be conceived of
as a local affine transformation, i.e., the existence of a real
solution would prove Tissot’s theory.

Interestingly, in general, any matrix can be decomposed
into a product of a rotation matrix, a diagonal matrix and
another rotation matrix; this is called the singular value
decomposition of the matrix. The elements of the diag-
onal matrix (i.e., in our particular example, the minimum
and maximum linear scales a and b) are called the singu-
lar values of the transformation matrix.
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E. Alternative derivation of Tissot’s theory

Each of the four equations is squared and added to-
gether. The square sum of the left-hand sides:

a2 cos2υcos2 ν + b2 sin2υ sin2ν

− 2abcosυcosν sinυ sinν + a2 sin2υcos2ν

+ b2 cos2υ sin2 ν + 2ab sinυcosν cosυ sinν

+ a2 cos2υ sin2 ν + b2 sin2υcos2ν

+ 2abcosυ sinν sinυcosν + a2 sin2υ sin2 ν

+ b2 cos2υcos2ν − 2ab sinυ sinν cosυcosν

Terms in red cancel each other. Factoring the remaining
terms, the expression is simplified as follows:

(a2 + b2)(sin2 ν + cos2ν)(sin2υ+ cos2υ) = a2 + b2

So the number of unknowns is reduced to two:

a2+b2 =
(
�x

�λ

/
dn
dλ

)2
+
(
�x

�ϕ

/
dm
dϕ

)2
+
(
�y

�λ

/
dn
dλ

)2
+
(
�y

�ϕ

/
dm
dϕ

)2
Notice that this equation is equivalent to a2+b2 = h2+k2

of the geometric derivation, since the blue and green
terms are just the formulae for the distortions along gratic-
ule lines.

Now take the original system of four unknown equa-
tions and subtract the product of the second and third
equations from the product of the first and fourth equa-
tions, i.e. calculate the determinant of the transformation
matrix. Again, we first deal only with the left-hand sides.

− a2 cosυcosν sinυ sinν − b2 sinυ sinν cosυcosν

+ ab sin2υ sin2 ν + abcos2υcos2 ν

+ a2 sinυcosν sinυcosν + b2 cosυ sinν cosυ sinν

+ ab sin2υcos2ν + abcos2υ sin2ν

The red terms are again cancelled, the remaining terms
are factored:

ab(sin2ν + cos2 ν)(sin2υ+ cos2υ) = ab

So the determinant of the left-hand matrix is equal to
the determinant of the right-hand matrix:

ab =
�x

�λ

/
dn
dλ
×
�y

�ϕ

/
dm
dϕ
−
�y

�λ

/
dn
dλ
× �x

�ϕ

/
dm
dϕ

This equation is equivalent to equation ab = p = hk sinϑ
of the geometric derivation, because the right-hand side
is equivalent to one of the formulae obtained for p. This
means that the areal scale of a mapping is equal to the
determinant of the matrix describing it.

We now have two equations and two unknowns left,
namely a2 + b2 = h2 + k2 and ab = 2hk sinϑ, which we
solved earlier in Sec. VIII.3. Thus, the algebraic derivation
gave the same result as the geometric one. However, from
the algebraic derivation we also found that:

• Every projection can be locally described by a 2× 2
matrix.

• The areal scale of the projection is the determinant
of the matrix describing the transformation.

• The extremal values of the linear scales in the projec-
tion are the singular values of the matrix.

Recent research in map projections often treats distor-
tions in this way, because this approach sometimes gives
more useful formulae for complex reference frames.

Substituting the solutions obtained for a and b back
into the original system of equations, υ and ν can be ex-
pressed, which have an important geometric meaning: υ,
the angle of the first rotation, indicates the angle on the
reference frame between parallels and the first principal
direction of the projection. ν, the second rotation indic-
ates the angle between the first principal direction of the
projection and the horizontal coordinate axis on the map,
i.e. it is used to construct the ellipse of distortion in the
correct direction on the map.
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Appendix F

Old projection systems in Hungary

The stereographic projection (Sec. X.5) was used in Hun-
gary from 1857 until the 1970s. Since this projection
gives a favourable representation of the polar region, it
is advisable to use a metagraticule (Sec. V.3). However,
this is much more difficult to define on an ellipsoid than
on a sphere. Therefore, a double mapping (Sec. XI.4) was
used: from the datum HD1863 based on the Bessel ellips-
oid, the first projection mapped onto the old Gaussian
conformal sphere (Sec. IX.3) where the spherical latitude
of the equidistant parallel is ϕs = 46°30′ , the other values
are given in Tab. F.1.

We rotate the graticule. The metapole is taken at the
origin (Gellérthegy). Since the area of Hungary was much
larger than the area within which the distortions of the
stereographic projection can be neglected, a metapole was
established in Transylvania on Kesztej Hill near Maros-
vásárhely (Târgu Mures, ) (Tab. F.2).

Finally, the formulae of the tangent stereographic pro-
jection are applied. Since both the auxiliary sphere and
the stereographic projection are conformal, the result of
the double mapping is also conformal. The coordinate
axes are oriented to the South and to the West (Fig. F.1).
The Hungarian stereographic projection is the oldest con-
formal double mapping used in the world.

xBp

yBp

Budapest system

l = 1·0001

xMvh

yMvh

Marosvásárhely system

l = 1·0001

Figure F.1: Hungarian stereographic projections

From 1936 onwards, the former ‘Civil’ coordinates were
translated and the axes of the new ‘Military’ coordinates
were oriented to the North and to the East in order to elim-
inate negative coordinates. The value of the translation
was 500 km for Budapest and 600 km for Marosvásárhely
(Fig. F.2; Tab. F.3). In the case of the Ivanić system found
in the former Croatia-Slavonia, the ‘Civil’ (and hence the
‘Military’) coordinates do not have a specific projection,
but can be estimated using the Cassini–Soldner projec-
tion (Sec. XIV.2).

Because of its advantageous properties, the Mercator

projection (Sec. XIII.2) is the projection of modern Hun-
garian civilian topographic maps, but it is used in oblique
aspect. Its introduction in 1908 is attributed to Fasching

Antal. He rotated the points of the previous stereographic

yBp

xBp

yMil

xMil
500 km

500
km

Figure F.2: ‘Civil’ and ‘Military’ coordinates

system by 6·44′′ clockwise around Gellérthegy, so the el-
lipsoidal coordinates were changed, although the Bessel

ellipsoid remained the reference frame. The new datum
is HD1909.

Fasching’ s cylindric system is also a double mapping:
first projects onto the old Gaussian sphere, then rotate
the graticule so that the metaequator passes through the
territory of Hungary. Three origins are designated for
the territory of the country on the Gellérthegy meridian
(Fig. F.3; Tab. F.2): at spherical latitudes 45°31′ 59′′ , 47°6′ ,
and 48°40′ 2′′ . Finally, the Mercator projection was cal-
culated. The coordinate axes here are also oriented to the
South and to the West.

The three cylindric systems are named HÉR, HKR, and
HDR, i.e. North, Central, and South cylindric system. The
boundaries of the three systems followed the boundaries
of the villages so that a single system was used within
each village. This projection was used exclusively for
cadastral purposes, with the civil topography using the
stereographic projection simultaneously.

x
yHDR

South cylindric zone

yHKR

Central cylindric zone

yHÉR

North cylindric zone

Figure F.3: Zonal cylindric projections

In the 1970s, the need arose to use a single projection
for topography and cadastre. As the existing systems were
still designed for the old Hungary, it was felt necessary
to create a new projection system adapted to the present
area of the country. This resulted in the introduction
of the EOV, which was described in detail in Sec. XIV.6.
We must pay attention, because the EOV uses a different
reference frame, and a new Gaussian sphere (Tab. F.1).
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F. Old projection systems in Hungary

Table F.1: Coefficients of the conformal sphere

Notation Old auxiliary sphere New auxiliary sphere

Reference frame — Bessel ellipsoid IUGG1967 ellipsoid
Major semi-axis a 6 377 397·155m 6 378 160m
Minor semi-axis b 6 356 078·963m 6 356 774·516m
First numeric eccentricity e 0·081 696 683 121 57 0·081 820 567 940 7
Radius of the Gaussian sphere R 6 378 512·966m 6 379 743·001m

κ 1·003 016 135 133 1·003 110 007 693
n 1·000 751 489 594 1·000 719 704 936

Equidistant parallel Φs 46°32′ 43·410 41′′ 47°10′

Equidistant parallel ϕs 46°30′ 47°7′ 20·057 80′′
Prime meridian from Ferro Λ0 36°42′ 53·5733′′ —
Prime meridian from Greenwich Λ0 19°3′ 7·5533′′ 19°2′ 54·8584′′

Table F.2: Central point of the metagraticule

Notation Budapest Marosvh. HÉR HKR HDR EOV

Ellipsoidal latitude Φ0 / Φc 47° 29′

9·6380′′
46° 33′

6·4273′′
48° 42′

56·3180′′
47° 8′

46·7267′′
45° 34′

36·5869′′
47° 8′

39·8147′′
Ellipsoidal longitude
(from Ferro, but from
Greenwich for the EOV)

Λ0 / Λc 36° 42′

53·5733′′
42° 3′

20·9550′′
36° 42′

53·5733′′
36° 42′

53·5733′′
36° 42′

53·5733′′
19° 2′

54·8584′′

Spherical latitude ϕ0 / ϕc 47° 26′

21·1372′′
46° 30’
22·9804′′

48° 40′ 2” 47° 6′ 45° 31′ 59′′ 47° 6′

Spherical longitude
(from Gellérthegy)

λ0 / λc 0° +5° 20′

41·8290′′
0° 0° 0° 0°

Table F.3: False easting and false northing of ‘Military’ coordinates

Budapest Marosvásárhely Ivanić

500 000m 600 000m 400 000m

Table F.4: Constants of the cylindrical projections

Notation HÉR / HKR / HDR EOV

c −1 0·999 93
X0 0m 200 000m
Y0 0m 650 000m

123



Appendix G

Projection systems in Europe

Tab. G.1 shows how some countries have tackled the issue of mapping. The South European and Scandinavian
countries not listed here generally use the UTM projection, while in the successor states of the Soviet Union, we still
find the Gauss–Krüger coordinates with reference frame S42. Of particular interest is Germany, where no uniform
system has been developed: in the former East Germany, the 1942 system is used, while in the former West Germany,
the federal states have developed their own systems, typically with a reference frame of Bessel ellipsoid and 3° wide
zones. The purpose of the table is to illustrate the diversity, what to look out for when using a topographic map of a
foreign country, what differences there may be from Hungarian solutions.

Two countries (Switzerland and the Netherlands) are particularly important, because while the Hungarian projec-
tions are poorly supported by GIS, the projections of these two countries are very similar to the Hungarian ones. The
former is not a coincidence: Fasching Antal, the developer of the zonal cylindric systems, worked in Switzerland
before coming to Hungary, and returned from there bringing the state-of-the-art mapping of the era. The different
standard parallel of the Gaussian sphere was a decision taken for the Austro-Hungarian Empire: the auxiliary sphere
was to be determined once for the whole Empire, and its central latitude was chosen to be distortion-free.

Table G.1: Projection systems of European countries

Country Reference Projection Notes

Czechia
Slovakia

S-JSTK
(Bessel)

Křovák

(Fig. XVI.3)
Double mapping: Gaussian sphere (Φs = 49°30′ ,Λ0 = 24°50′), followed
by a reduced Lambert conformal conic projection in oblique aspect.
Metapole ϕ0 = 59°45′ 27′′, standard parallel ϕ′s = 78°30′; reduction
d = 0·9999. Axis X points to the North, Y to the West.

Romania S42
(Krasovskiy)

Stereo70
(Roussilhe

projection)

This is an oblique, non-perspective, conformal projection similar to
the UPS directly from ellipsoid to plane. Contrary to its name, it is not
stereographic, just very similar to it. The formulae used in practice are
derived from a complex series. Origin of the projection: Φ0 = 46°,Λ0 =
25°, reduction: 0·99975, translation: 500 km

Austria MGI
(Bessel)

Gauss–
Krüger

Uses 3° zones and the prime meridian of Ferro, central meridians 28°,
31°, 34° (from Greenwich 10°20′ , 13°20′ , 16°20′)

Former
Yugoslavia

MGI
(Bessel)

Reduced
Gauss–
Krüger

3° zones, reduction 0·9999, central meridians 15°, 18°, 21°, 24°. After
the break-up of Yugoslavia, the WGS84 datum was adopted. In Croatia,
only one zone is used, with central meridian 16°30′ .

Ukraine S42
(Krasovskiy)

Gauss–
Krüger

3° zones

Poland
(before
2009)

S42
(Krasovskiy)

UKŁAD
(Roussilhe

projection)

A projection similar to that of Romania was used, dividing the country
into four zones along the borders of the voivodeships with distinct
projection origins. For some reason, the Gauss–Krüger was used in
Upper Silesia.

Poland
(after 2009)

WGS84 Gauss–
Krüger

3° zones reduced by a factor of 0·99923.

Bulgaria
(after 2010)

BGS2005
(GRS80)

Lambert

conformal
conic and
UTM

The former top-secret (still unknown) projection has been replaced
for cadastral and topographic purposes by two different systems: the
former uses the UTM projection with a Bulgarian reference frame, the
latter uses an ellipsoidal conic projection with central meridian 25°30′

divided into two zones. The northern zone has a standard parallel at
43°20′ and the southern zone at 42°.
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G. Projection systems in Europe

Table G.1: (contd.)

Country Reference Projection Notes

Switzerland CH1903
(Bessel)

Oblique
conformal
cylindrical

This double mapping inspired the Hungarian cylindric projections.
Its origin is the Bern Observatory (Φ = 46°57′ 8·66′′ ,Λ = 7°26′ 22·5′′),
here is the intersection of the metaequator and the prime meridian
and its latitude is also the standard latitude of the Gaussian sphere. to
avoid swapping signs and coordinates, a translation of Y0 = 600 km,
X0 = 200 km was applied. From a Hungarian point of view, this is very
significant, because the principle of the EOV differs only in that the
standard latitude of the Gaussian sphere is not at the projection origin
(causing a few cm deviation), so if any GIS software does not know
the formulae of the EOV (which is unfortunately 99% of the software
available), it usually recommends a reparametrization of the Swiss
projection.

Netherlands Amersfoort
(Bessel)

Oblique
secant ste-
reographic

Also a double mapping, the origin this time is the fortress Amersfoort
(Φ = 52°9′ 22·18′′ ,Λ = 5°23′ 15·5′′). The auxiliary sphere is, like the
Swiss example, true-scale along the latitude of the projection origin.
The reduction compared to the tangent stereographic projection is
0·9999079, the axes are translated by 155 km to the East and 463 km to
the North, so x < 280 km and y > 300 km. The projection is significant
from a Hungarian point of view: it is the most similar projection to the
Budapeststereographic system, and can be approximated to centimetre
accuracy by reparametrization (i.e. the deviation is negligible compared
to the error of the datum transformation).

France
(before
2001)

NTF
(Clarke)

Lambert

conformal
conic

A real French-style projection. Prime meridian at Paris, everything
is in gradians. The country is divided into three conic projections
along parallels, the standard parallels are 55g,52g, and 49g; in Corsica,
46g85c.

France
(after 2001)

RGF93
(WGS84)

Lambert

conformal
conic

Since then, the naughty French have settled down and now measure
in degrees from Greenwich. The country was divided into 3° zones
along parallels and each band is represented by a separate ellipsoidal
conformal conic projection. The true-scale parallels are located 45′

north and south from the mid-latitude of the band, the central meridian
is at 3°.

Belgium WGS84 Lambert

conformal
conic

The Belgians have recently switched from datum BD72 based on the
Hayford ellipsoid to WGS84, but the projection is unchanged. The
prime meridian passes through the Brussels Observatory (4°21′ 33·18′′),
the conformal conic projection is true-scale at latitudes 49°50′ and
51°10′ .

United
Kingdom

OSGB1936
(Airy)

Reduced
Gauss–
Krüger

The whole country is a single zone, the central meridian is 2°W, the
reduction is about 0·9996 (not exactly due to the conversion between
metres and feet). The vertical axis is translated 400 km east of the
central meridian, the horizontal axis is placed 100 km north from the
intersection of the central meridian and latitude 49°

Ireland IRENET95
(GRS80)

Reduced
Gauss–
Krüger

The principle of the mapping is very similar to the British one, the
central meridian is 8°W, the intersection of this with latitude 53°30′ is
at 600 km on the horizontal axis and 750 km on the vertical axis, the
reduction factor is 0·99982.

125



Appendix H

Inverse formulae of oblique projections

For GIS applications, it is often necessary to calculate
inverse projection formulae. Usually, functions for pro-
jections in the normal aspect are easy to invert, but it is
difficult to invert projections in oblique aspects. There-
fore, I will now demonstrate the necessary concepts on
two examples, the inverses of the oblique stereographic
and Mercator projections.

The square of the radius function in the tangentstereo-
graphic projection:

x2 + y2 = ϱ2 = 4R2 tan2
β′

2
= 4R2

2sin2 β
′

2

2cos2 β
′

2

= 4R2
1−

(
1− 2sin2 β

′

2

)
1+

(
2cos2 β

′

2 − 1
) = 4R2

1−
(
cos2 β

′

2 − sin2 β
′

2

)
1+

(
cos2 β

′

2 − sin2 β
′

2

)
= 4R2

1− cosβ′

1+ cosβ′
= 4R2

1− sinϕ′

1+ sinϕ′

Introduce the auxiliary variable t.

t =
x2 + y2

4R2

Then substitute the corresponding oblique formulae
from Sec. V.3 for sinϕ′ into the previous equation.

t =
1− sinϕ sinϕ0 − cosϕ cosϕ0 cos(λ−λ0)
1+ sinϕ sinϕ0 + cosϕ cosϕ0 cos(λ−λ0)

t + t sinϕ sinϕ0 + t cosϕ cosϕ0 cos(λ−λ0)
= 1− sinϕ sinϕ0 − cosϕ cosϕ0 cos(λ−λ0)

cosϕ cos(λ−λ0)(t cosϕ0 + cosϕ0)

= 1− sinϕ sinϕ0 − t − t sinϕ sinϕ0

cosϕ cos(λ−λ0) =
1− t − (1+ t) sinϕ sinϕ0

(1+ t)cosϕ0

This is written into the formula for y calculated in
Sec. X.5 so that λ is fortunately cancelled.

y = −2R
sinϕ cosϕ0 − sinϕ0

1−t−(1+t) sinϕ sinϕ0
(1+t)cosϕ0

1+ sinϕ sinϕ0 + cosϕ0
1−t−(1+t) sinϕ sinϕ0

(1+t)cosϕ0

= −2R
(1+t) sinϕ cos2ϕ0−(1−t) sinϕ0+(1+t) sinϕ sin2ϕ0

(1+t)cosϕ0
(1+t)+(1+t) sinϕ0 sinϕ+(1−t)−(1+t) sinϕ sinϕ0

(1+t)

= −2R
(1+ t) sinϕ − (1− t) sinϕ0

2cosϕ0

From this, ϕ can be expressed simply:

y cosϕ0 = −R(1+ t) sinϕ +R(1− t) sinϕ0
R(1+ t) sinϕ = R(1− t) sinϕ0 − y cosϕ0

ϕ = arcsin
R(1− t) sinϕ0 − y cosϕ0

R(1+ t)

The numerator of the projection formula for x is sin∆λ,
so the formula for cosϕ cos∆λ can only be replaced by
applying the magic trick sin∆λ = tan∆λcos∆λ. After
that, tan∆λ remains in the numerator, and we are trying
to express it.

x = −2R
tan(λ−λ0)

1−t−(1+t) sinϕ sinϕ0
(1+t)cosϕ0

1+ sinϕ sinϕ0 + cosϕ0
1−t−(1+t) sinϕ sinϕ0

(1+t)cosϕ0

= −2R
tan(λ−λ0)[(1−t)−(1+t) sinϕ sinϕ0]

(1+t)cosϕ0
(1+t)+(1+t) sinϕ0 sinϕ+(1−t)−(1+t) sinϕ sinϕ0

(1+t)

= −2R
tan(λ−λ0)[(1− t)− (1+ t) sinϕ sinϕ0]

2cosϕ0

Let us rearrange!

xcosϕ0 = − tan(λ−λ0)[R(1− t)−R(1+ t) sinϕ sinϕ0]

tan(λ−λ0) =
−xcosϕ0

R(1− t)−R(1+ t) sinϕ sinϕ0

Oops! We have a formula for the red expression at the
top of the column, on the second line! If I substitute this,
we can bid a tearful farewell to sinϕ and λ can finally be
expressed unambiguously:

tan(λ−λ0) =
−xcosϕ0

R(1− t)−R(1− t) sin2ϕ0 + y cosϕ0 sinϕ0

λ−λ0 = arctan
−xcosϕ0

R(1− t)(1− sin2ϕ0) + y cosϕ0 sinϕ0

λ = arctan
−x

R(1− t)cosϕ0 + y sinϕ0
+λ0

If we have not fed up with the torture, let us get to
the Mercator projection! The formulae for the oblique
Mercator projection given in Sec. XIII.2 are rearranged
here.

tan
x
cR

=
sinλ

tanϕ sinϕc − cosλcosϕc

e
2y
cR =

1+ sinϕ cosϕc − cosϕ sinϕc cosλ
1− sinϕ cosϕc + cosϕ sinϕc cosλ

Let t and z be the following auxiliary variables:

t = e
2y
cR

z = tan
x
cR
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H. Inverse formulae of oblique projections

Then the lower equation rearranged:

t − t sinϕ cosϕc + t cosϕ sinϕc cosλ

= 1+ sinϕ cosϕc − cosϕ sinϕc cosλ

cosϕ cosλ(t sinϕc + sinϕc)

= 1+ sinϕ cosϕc − t + t sinϕ cosϕc

cosλ =
1− t + (1+ t) sinϕ cosϕc

(1+ t) sinϕc cosϕ

Substitute this back into the other equation.

sinλ

tanϕ sinϕc − cosϕc
1−t+(1+t) sinϕ cosϕc

(1+t)cosϕ sinϕc

= z

sinλ = z (1+t) sinϕ sin2ϕc+(1−t)cosϕc+(1+t) sinϕ cos2ϕc
(1+t) sinϕc cosϕ

= z
(1+ t) sinϕ + (1− t)cosϕc

(1+ t) sinϕc cosϕ

We know that sin2λ+ cos2λ = 1, i.e:[
z (1+t) sinϕ+(1−t)cosϕc

(1+t) sinϕc cosϕ

]2
+
[1−t+(1+t) sinϕ cosϕc

(1+t) sinϕc cosϕ

]2
= 1

(1+ t)2 sin2ϕ(z2 + cos2ϕc) + (1− t)2(z2 cos2ϕc + 1)
+ 2(1− t)(1+ t) sinϕ cosϕc(z

2 + 1)
= (1+ t)2 sin2ϕc cos2ϕ

(1+ t)2 sin2ϕ(z2 + cos2ϕc + sin2ϕc)

+ 2(1− t)(1+ t) sinϕ cosϕc(z
2 + 1)

+ (1− t)2(z2 cos2ϕc + 1)− (1+ t)2 sin2ϕc = 0

This is a quadratic equation in sinϕ. We divide by the
leading coefficient to prevent getting mile-long formulae.

sin2ϕ + 2
1− t
1+ t

cosϕc sinϕ

+
(1− t)2(z2 cos2ϕc + 1)− (1+ t)2 sin2ϕc

(1+ t)2(1+ z2)
= 0

And then the solver formula for the quadratic equation:

sinϕ = −1− t
1+ t

cosϕc

±
√(
1−t
1+t

)2
cos2ϕc −

(1−t)2(z2 cos2ϕc+1)−(1+t)2 sin2ϕc
(1+t)2(1+z2)

= (t−1)cosϕc
1+t ±

√
(1−t)2(cos2ϕc+z

2 cos2ϕc−z2 cos2ϕc−1)+(1+t)2 sin2ϕc
(1+t)2(1+z2)

=
(t − 1)cosϕc
1+ t

±

√[
−(1− t)2 + (1+ t)2

]
sin2ϕc

(1+ t)2(1+ z2)

=
(t − 1)cosϕc
1+ t

±
sinϕc
1+ t

√
4t
1+ z2

Experience has shown that the sign ± becomes + if
|x/cR| < π/2, i.e., on the hemisphere centred on the origin,
− for points further away. So the result is:

ϕ = arcsin

 (t − 1)cosϕc
t + 1

±
2sinϕc
1+ t

√
t

1+ z2


Now that we know the latitude, let us look at the lon-

gitude! We know that tanλ = sinλ/cosλ:

tanλ =
z(1+ t) sinϕ + z(1− t)cosϕc
1− t + (1+ t) sinϕ cosϕc

=
z(t − 1)cosϕc ± 2z sinϕc

√
t
1+z2 + z(1− t)cosϕc

1− t + (t − 1)cos2ϕc ± 2sinϕc
√

t
1+z2 cosϕc

=
±2z sinϕc

√
t
1+z2

(1− t)(1− cos2ϕc)± 2sinϕc cosϕc
√

t
1+z2

That is, the final result:

λ = arctan
±2z

√
t
1+z2

(1− t) sinϕc ± 2cosϕc
√

t
1+z2

Thus, the inverse projection is obtained. ± remains +
up to a distance of 90° from the origin, and − further
away.

127



Appendix J

Pseudocylindricals with straight meridians

There is a group of pseudocylindrical projections, in
which not only the parallels but also the meridians are
mapped to straight lines, but the latter do not cross par-
allels at a right angle. These projections were sometimes
used in the past because of their ease of construction, but
they have now been superseded. A major drawback is
that the mapped meridians are broken at the Equator.

The author of the oldest such mapping, the trapezoidal
projection, is unknown and may date from the 15th cen-
tury. It is sometimes referred to as the Donis projection.
In it, the central meridian and the Equator are equidistant,
straight meridians connect the Equator and the pointed
poles. This gives the projection formulae:

x =
2
π
R�λ(π
2
− |�ϕ|)

y = R�ϕ
The projection in Fig. J.1 is aphylactic. The projection

has been used primarily for regional maps. In such cases,
often the bounding parallels were made equidistant in-
stead of the Equator. The projection formulae then corres-
pond to the polyhedric projection described in Sec. XXI.3,
with the radius of curvature obviously replaced by the
radius of the sphere.

Figure J.1: Trapezoidal projection

Let us form an equal-area projection! To do this, first
try to achieve a correct total area by rescaling! The area
of the rhombus is Rπ × 2Rπ/2 = R2π2, which we want to
scale by a factor c in both directions to obtain 4R2π:

c2R2π2 = 4R2π

c =
2
√
π

After the scaling, we apply the method of auxiliary
angles, denoting the auxiliary angle by ψ. The spherical
zone is mapped to a trapezium, its base, the Equator,
is cR2π long, its height is cR�ψ, and its upper base is
4cR(π/2− |�ψ|). The area of the trapezium, i.e. the average

of the two bases multiplied by the height, is equal to the
surface area 2π sinϕ of the spherical zone:

2cRπ+ 4cR
(
π
2 −

∣∣∣�ψ∣∣∣)
2

cR�ψ = 2R2π sinϕ

2π�ψ − 2�ψ2 signψ =
2π sinϕ
c2

2�ψ2 signψ − 2π�ψ +
π2

2
sinϕ = 0

�ψ =
2π ±

√
4π2 − 4π2 sinϕ signψ
4signψ

=
π
(
1±

√
1− sin|ϕ|

)
2signϕ

Since �ψ < π/2, from the two solutions, we can only
consider the one with the negative sign, and the signs of
ϕ and ψ are the same. Furthermore:

1− sinϕ = 1− cos(90°−ϕ)

= sin2 90°−ϕ2 + cos2 90°−ϕ2 −
(
cos2 90°−ϕ2 − sin2 90°−ϕ2

)
= 2sin2

90°−ϕ
2

From this:

�ψ =
π

2

(
1−
√
2sin

90°− |ϕ|
2

)
signϕ

Substituting this into the formulae of the trapezoidal
projection, we obtain the equal-area projection of the
French Collignon from 1865 (Fig. J.2):

x = c
2
π
R�λ(π
2
−
∣∣∣�ψ∣∣∣) =

2
√
2

√
π
R�λsin

90°− |ϕ|
2

y = cR�ψ =
√
πR

(
1−
√
2sin

90°− |ϕ|
2

)
signϕ

Figure J.2: Collignon projection
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J. Pseudocylindricals with straight meridians

Let us construct a blended projection of the trapezoidal
and the Plate Carrée projections.

x = c
2
π
R�λ(π2 − |�ϕ|)+R�λ

2
= cR�λ(1− |�ϕ|

π

)
y = c

R�ϕ +R�ϕ
2

= cR�ϕ
This is the Eckert I projection (Fig. J.3). Eckert did

not define the relationship between the graticule and the
map scale for the mapping given only by construction in-
structions, so the constant c cannot be defined. However,
we can assume that Eckert may have intended it to have
correct total area, just like his other maps. The projection
consists of a square with an area of c2R2π2, and two iso-
sceles triangles with an area of (cRπ×cRπ/2)/2, while the
total area should be 4R2π:

c2R2π2 + 2
c2R2π2

4
= 4R2π

3c2

2
π = 4

c = 2
√
2
3π

Figure J.3: Eckert I projection

The Eckert II projection has a similar appearance
(Fig. J.4), but is equal-area. Let us introduce the auxiliary

angle ψ again. This time, the mapped spherical zone is al-
most the same trapezium as in the Collignon projection,
but the length of the upper base is now 2cR(π − |�ψ|).

2cRπ+ 2cR
(
π −

∣∣∣�ψ∣∣∣)
2

cR�ψ = 2R2π sinϕ

2π�ψ − �ψ2 signψ =
2π sinϕ
c2�ψ2 signψ − 2π�ψ +

3π2

4
sinϕ = 0

�ψ =
2π ±

√
4π2 − 3π2 sinϕ signψ
2signψ

=
π
(
2±

√
4− 3sin|ϕ|

)
2signϕ

Again, only the root with a negative sign is accepted as
the solution, because ψ < 90°. Finally:

x = cR�λ1−
∣∣∣�ψ∣∣∣
π

 =
√
2
3π
R�λ√4− 3sin|ϕ|

y = cR�ψ =
√
2π
3
R
(
2−

√
4− 3sin|ϕ|

)
signϕ

This projection, unlike the others, can occur extremely
rarely on less old maps. The use of pseudocylindricals
with straight meridians in modern GIS occurs only when
georeferencing old maps.

Figure J.4: Eckert II projection
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Appendix K

Approximate formulae of Baranyi’s maps

Here you can read the mathematical description of
the Baranyi projections given without derivation in
Sec. XXIV.1.

In the Baranyi II projection, the Equator is equidistant,
i.e. 2Rπ long. The length 2ymax of the central meridian is
7/10 times the length of the Equator, i.e. ymax = y(90°) =
7Rπ/10 (Fig. K.1). Latitude ϕB = 70° divides the cent-
ral meridian in the ratio 13 : 5, so y(70°) = 13ymax/18 =
91Rπ/180. The distance between the parallels increases
in proportion to the distance from the Equator, i.e. y (in
the Northern Hemisphere) is a quadratic function, formu-
lated as p�ϕ + q�ϕ2. Substituting 90° and then 70° for ϕ
gives two equations:

π

2
p+

π2

4
q =
7Rπ
10

7π
18
p+
49π2

324
q =
91Rπ
180

Solving the system of equations with e.g. Cramer’s rule,
we get p = 19R/20 and q = 9R/(10π). From this (already
taking into account the Southern Hemisphere) we obtain
the following projection formula:

y = R
(19
20
|�ϕ|+ 9

10π
�ϕ2)signϕ

Converting the ordinary fractions to decimal fractions,
we obtain the usual form of y.

ϕB = 70°

r1
r2

Rπ

d
13
18ymax

5
18ymax

δ

η

η/2

χ

ζ

Figure K.1: Baranyi II projection

The centre of the red arc is Rπ − r1 far away from the
central meridian. At the same time, the half-length d of
the parallel ϕB is longer by r1 cosδ:

d = Rπ − r1 + r1 cosδ

Next, we define the angle δ, which is the angle between
the intersection of the frame arcs and the Equator. On the

one hand, from the red arc of radius r1:

sinδ =
13
18ymax

r1
=
91
180Rπ

r1
On the other hand, it can be seen from the figure that,

because of the smooth connection of the arcs, the com-
plementary angle of δ is η. From the inscribed angle
theorem, it follows that the green angle subtended by the
same chord is η/2. However, the tangent of this can be
easily read off:

tan
η

2
= tan

90°− δ
2

=
5
18ymax

d
=

35
180Rπ

Rπ − r1 + r1 cosδ

From both previous equations, δ can be expressed. The
two expressions are necessarily equal:

arcsin
91
180Rπ

r1
= 90°− 2arctan

35
180Rπ

Rπ − r1 + r1 cosδ

In the denominator of the right-hand side, cosδ =√
1− sin2 δ, the previously obtained formula for sinδ can

be substituted, leaving only r1 as unknown. After a suffi-
cient amount of trigonometric wizardry and a hopeless
struggle with roots, the equation can be solved:

r1 =
Rπ
1450

(
1003− 3

√
5107
2

)
≈ 1·84466R

Substituting back into the previously derived equations,
δ ≈ 59·42867° and d ≈ 2·23514R. Since sinη = cosδ =
d/r2, r2 ≈ 4·39461R can also be calculated. The latter is
slightly smaller than the length of the central meridian.

Let the angle between the radius to the endpoint of the
parallel −70°≤ ϕ ≤ 70° and the Equator be χ! Then, from
the figure:

sinχ =
y(ϕ)
r1

Furthermore, the centre of the red circle is at a distance
Rπ − r1 from axis y and the coordinate x of the endpoint
of the parallel is r1 cosχ greater than this. Since parallels
are evenly divided by meridians:

x = (Rπ − r1 + r1 cosχ)
�λ
π

For latitudes |ϕ| > 70°, the mapped parallel is r2−ymax +
y far away from the centre of the blue circle. Thus, the
angle ζ to the endpoint of the parallel is obtained:

cosζ =
r2 −

7
10Rπ+ y(ϕ)

r2
The coordinate x of the endpoint of the parallel is

r2 sinζ, so:

x = r2 sinζ
�λ
π
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K. Approximate formulae of Baranyi’s maps

This completes the description of projection II. Let us
move on to the discussion of projection IV. Here Baranyi

did not give the relationship between the units he used
and the real distances. If we consider the origin of the
projection to be distortion-free, then, knowing that the
side length of the 10° degree quadrangles here is 12 units,
it follows that one unit is 10Rπ/(180 × 12) = Rπ/216 ≈
0·0145444R. In this projection, the radius of the red arc
is r1 = 100 units. The length of the Equator is 368 units
and the length of the central meridian is 222 units. This
implies that the centre of the red circle is 84 units far
away from axis y, i.e., x0 ≈ 1·22172R (Fig. K.2).

ϕB

r2

r1

x0

r2 − r1

yB

y0

r1

δ

η

η/2η/2

η/2

Figure K.2: Baranyi IV projection

The centres of the blue and red arcs are r2−r1 apart due
to the smooth connection. Plotting this distance on axis y
from the centre of the blue arc brings us to a distance of
111− r1 = 11 units from the Equator (here we have used
the fact that half of the meridian is 111 units). Let us
denote the angle between the two equal sections by η!

Then the angle in the upper right corner is η/2 accord-
ing to the inscribed angle theorem, and the angle in the
upper left corner is also η/2 due to symmetry. The centres
of the blue and red circles and the previously marked
point on the central meridian define isosceles triangles
of leg r2 − r1, which is similar to one defined by centre of
the blue circle, the North Pole and the point where the
two circles join. Because of this, the angles in the top left
corner and at the centre of the red arc are equal, so the
latter is also η/2. Its tangent (legs measured in units) is:

tan
η

2
=
111− r1
x0

=
11
84

That is, η ≈ 14·92°. This gives δ = 90° − η ≈ 75·08°.
Since yB = r1 sinδ, yB ≈ 96·63 units. Furthermore:

tanη =
84

r2 − 111
Thus, r2 ≈ 426·23 units, y0 = r2 − 111 ≈ 315·23 units.

The coordinate y is approximated by a 9 degree odd
polynomial for symmetry, where the first-degree coeffi-
cient is one (the derivative of y at ϕ = 0 is R):

y = R(�ϕ + a�ϕ3 + b�ϕ5 + c�ϕ7 + d�ϕ9)
The coefficients are chosen to follow Baranyi’s con-

struction instructions given in Sec. XXIV.1. That is, at the
Pole, y = 111 units, converted to 37Rπ/72. The distance
between parallels near the Pole is at the same as near the
Equator, so the derivative of y here is also R. At the Pole
and around latitude 45°, the parallels are evenly spaced,
i.e. the second derivative of y is zero at these two locations.
From this, we obtain four equations:

R

(
π

2
+ a

π3

8
+ b

π5

32
+ c

π7

128
+ d

π9

512

)
=
37Rπ
72

R

(
1+ a

3π2

4
+ b
5π4

16
+ c
7π6

64
+ d
9π8

256

)
= R

R

(
a
6π
2

+ b
20π3

8
+ c
42π5

32
+ d
72π7

128

)
= 0

R

(
a
6π
4

+ b
20π3

64
+ c
42π5

1024
+ d
72π7

16384

)
= 0

The solution of the linear system of equations gives
the coefficients a,b,c,d. Substituting these back into the
original polynomial, we can find by solving a non-linear
equation that y = yB is reached by the polynomial at latit-
ude ϕB ≈ 78·07°. This is important for determining the
projection formulae for x, because the equations for the
red and blue circles are different. They are:

xr = x0 +
√
r21 − y2

xb =
√
r22 −

(∣∣∣y∣∣∣+ y0
)2

The slower and slower descending divisions along the
parallels are approximated by a logarithm:

f (λ) =
ln

(
1+A

∣∣∣�λ∣∣∣)
AB

signλ

In the choice of coefficients, we aim for f (180°) = 1. For
the origin to be distortion-free, we should obtain R by
multiplying half-length of the Equator and the derivative
of f at 0. From the latter condition, B = 23π/27, while
substituting it back into the former condition, we obtain
a non-linear equation from which the approximate value
of A can be calculated. Finally, the map coordinate x is
obtained as the product of f (λ) and xr or xb, calculated
from the equation of the circle at the given latitude. The
final result is:

y = R(�ϕ + 0·073880�ϕ3 − 0·0538964�ϕ5
+ 0·01560242�ϕ7 − 0·001639406�ϕ9)

x =
ln

(
1+ 0·11679

∣∣∣�λ∣∣∣)
0·31255

signλ

×


(
1·22172R+

√
2·115393R2 − y2

)
if |ϕ| ≤ ϕB√

38·4308R2 −
(
4·58448R+

∣∣∣y∣∣∣)2 if |ϕ| > ϕB
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Modified polyconic projection

In the modified polyconic projection described in
Sec. XXVI.2, the ellipsoidal reference frame is divided
into geographical quadrangles, extending 4° in latitude
and 6° in longitude up to ±60°, 12° to ±76°, and finally
24° to ±84°. Each quadrangle is mapped onto a separate
plane, and each mapped quadrangle is a distinct map
sheet with its own planar coordinate system. Adjacent
sheets can be aligned along either the bounding parallels
or the bounding meridians, but the corners of the sheets
are not right angles, so it is impossible to fit four adjacent
sheets without a gap.

Let Λ1,2 be the longitude of the boundaries, Φ1,2 the
latitude of the boundaries (also equidistant), in addi-
tion, Λ0 = (Λ1 +Λ2)/2 is the central meridian and Λ3 =
Λ0+2(Λ2−Λ0)/3 is one of the equidistant meridians. The
mapped meridians are straight, the radii of the circular
mapped parallels are given by the formula ϱ =N (Φ)cotΦ ,
which is usual for polyconic projections. The intersection
point of the parallel and the y axis is at a distance t from
the origin, t1 = 0 as shown in Fig. L.1. Find the coordin-
ates x,y of the point P . The coordinates of points P1,2 can
be obtained from the radius function and the equidistancy
of the bounding parallels:

x1,2 =N
(
Φ1,2

)
cotΦ1,2 sin

[(
Λ3 −Λ0

)
sinΦ1,2

]
y1,2 = t1,2 +N

(
Φ1,2

)
cotΦ1,2

(
1− cos

[(
Λ3 −Λ0

)
sinΦ1,2

])

x

y

Λ0

Φ1

Φ2

Φ

Λ3

P1

P2

Λ1 Λ2
Λ

P4

P5

P3

x3

ϱ

Px

ϱ

t
y3

t2

Figure L.1: Modified polyconic projection (red lines are equidistant)

From the equations above, t2 is unknown (since, ex-
ceptionally, we have not prescribed the equidistancy of
the central meridian), so y2 is unknown. However, the
distance P1 and P2 is the same as the ellipsoidal distance:

√
(x2 − x1)2 + (y2 − y1)2 =

Φ2U
Φ1

M(Φ)dΦ

Of this, only y2 is unknown, and by expressing it and
then substituting t2 into the equation above, y2 can be
calculated. Let the point P3 be the intersection of the
parallel through point P with meridian Λ3. Then, on the
one hand, from the fact that point P3 is located on the line
passing through points P1 and P2, and on the other hand,
from the equidistancy of the meridian Λ3:

x3 − x1
x2 − x1

=
y3 − y1
y2 − y1√(

x3 − x1
)2

+
(
y3 − y1

)2
=

ΦU
Φ1

M(Φ)dΦ

The system of two unknown equations can be solved by
expressing x3 − x1 from the lower equation and substitut-
ing it into the upper one to obtain y3. Substituting it into
the upper equation also gives x3. The green dashed line
and the radius of the parallel pointing to point P3 define
a right triangle. Its vertical leg is shorter than the radius
by y3 − t. From the Pythagorean theorem:

ϱ2 = x23 +
[
ϱ −

(
y3 − t

)]2
Since ϱ = N (Φ)cotΦ , only t is unknown, so it can be

expressed after a rearrangement.
Again, points P4 and P5 can be obtained from the

equidistancy of the bounding parallels, t2 is already
known:

x4,5 =N
(
Φ1,2

)
cotΦ1,2 sin

[
(Λ−Λ0) sinΦ1,2

]
y4,5 = t1,2 +N

(
Φ1,2

)
cotΦ1,2

(
1− cos

[
(Λ−Λ0) sinΦ1,2

])
Point P is located on the line through points P4 and P5:

x − x4
x5 − x4

=
y − y4
y5 − y4

On the other hand, the Pythagorean theorem just ap-
plied is also true for the black dashed right triangle of
hypotenuse ϱ:

ϱ2 = x2 + [ϱ − (y − t)]2

The last two equations give a quadratic system of equa-
tions with two unknowns for the coordinates x,y, which
can be solved, for example, by substituting into each other
and then utilizing the solver of quadratic equations.

This aphylactic projection was applied to the Interna-
tional Map of the World (Internetionale Weltkarte) at a
scale of 1 : 1 000 000. The idea for the map was conceived
in 1891 and the choice of projection was decided in 1909.
Lallemand developed the construction instructions in
1911, but Snyder published the analytical formulae only
in 1982. Since 1962, the map series has been drawn in
the Lambert conformal conic projection.
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Index

A
Adams, Oscar Shermann (1874–1962), American math-

ematician, 104–106
Agnese, Battista (1500?–1564), Italian cartographer, 76
Airy, Sir George Biddell (1801–1892), English astro-

nomer, 108–110, 125
Airy–Kavrayskiy criterion, 110
Aitoff proj., 100–102, 108
Aitov, David Aleksandrovich (1854–1933), Russian

cartographer, 100
Albers, Heinrich Christian (1773–1833), German car-

tographer, 58
Albers equal-area conic, 58, 59, 64, 91
American (ordinary) polyconic, 93, 94
aphylactic proj., 26
Apian I proj., 75, 76, 97
Apian II proj., 75, 78, 79, 82–84, 100
Armadillo proj., 103
aspect of proj., see metacoordinates
Atlantis proj., 82, see also Mollweide proj.
auxiliary sphere, 33, 34, 43, 50, 51, 53, 61, 72, 122, 124,

125
azimuthal equidistant, 40, 41, 57, 64, 77, 88, 97, 100,

102, 108
azimuthal proj., 26, 36

B
Baranyi János (1932–1990), Hungarian cartographer,

87–89
Baranyi II proj., 87, 130, 131
Baranyi IV proj., 87, 89, 110

interrupted, 88
Baranyi IV. vet.,
Bartholomew, John Christopher (1923–2008), Scottish

cartographer, 82, 101, 103
Behrmann, Walter Emmerich (1882–1955), German

geographer, 46
Behrmann proj., 46
Bessel, Friedrich Wilhelm (1784–1846), German geo-

desist, 22, 24, 43, 51, 61, 64, 122, 124, 125
blended proj., 77–79, 81, 83, 86, 100, 101, 129
Bludau, Alois (1861–1913), German cartographer, 97
Bonne, Rigobert (1727–1794), French cartographer, 91
Bonne proj., 91, 92, 103, 110
Borkowski, Kazimierz M., Polish astronomer, 18, 117
Bowring, Bernard Russell (1925–2006), English geo-

desist, 18
Braun, Carl (1831–1907), German astronomer, 45, 49
Braun proj., 45, see also quasi-perspective proj.
Briesemeister proj., 101, see also Hammer proj.
Burša–Wolf transform, see Helmert transform

C
Cahill, Bernard Joseph Stanislaus (1866–1944), Amer-

ican architect, 106
cardioid proj., see Werner proj.
Cassini de Thury, César-François (1714–1784), French

surveyor, 47
Cassini proj. (Cassini–Soldner proj.), 47, 50, 122
Cauchy–Riemann differential equation, 104
central cylindrical proj., 44
central meridian, 33
central parallel, 54
Chamberlin proj., 107
Chebyshev, Pafnutiy Lvovich (1821–1894), Russian

mathematician, 32, 39, 48, 104, 109
Clairaut’s relation, 21
Clarke, Alexander Ross (1828–1914), British geodesist,

24, 94, 125
colatitude, 36, 54, 92
Collignon proj., 128, 129
complex number, 43, 60, 67, 104
composite proj., 85, 86, 88, 103, 106
cone constant, 54
conformal proj., 26, 30, 31, 104
conic proj., 26, 54
Craig proj., 102
Craster proj., 107
cylindrical proj., 26, 44
cylindrical stereographic, see Braun proj.; Gall proj.

D
datum, see geodetic datum
datum transform

3 parameter, see Molodenskiy transform
7 parameter, see Helmert transform
grid shift, 25, 63, 65

de L’Isle, Joseph-Nicolas (1688–1768), French carto-
grapher, 56

Deetz, Charles Henry (1864–1946), American carto-
grapher, 94

detectproj, 106
distorted cartogram, 62
distortion value

global, 109, 110
local, 108, 109

Donis proj., see trapezoidal proj.
double mapping, see auxiliary sphere
Dürer, Albrecht (1471–1528), German painter, 106
Dymaxion proj., 106

E
Eckert-Greifendorff, Max (1868–1938), German geo-

grapher, 77, 83
Eckert I proj., 129
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Eckert II proj., 129
Eckert III proj., 78, 79, 81
Eckert IV proj., 82, 92, 110
Eckert V proj., 78–80
Eckert VI proj., 80, 85
Eisenlohr proj., 109
EOV, 53, 63, 122, 123, 125
EPSG number, 63
Equal Earth proj., 89
equal-area polyconic, 95
equal-area (equivalent) proj., 26, 28, 30
equidistant conic, 56, 64
equidistant line, 26
equirectangular proj., 47, 78, 79, 101, 110
equivalent proj., see equal-area proj.
Érdi-Krausz György (1899–1972), Hungarian carto-

grapher, 86, 107
Etzlaub, Erhard (1460?–1532), German cartographer,

48
Euler–Lagrange differential equation, 110

F
Fasching Antal (1879–1931), Hungarian geodesist, 122,

124
first eccentricity, 8, 23, 24, 123
flattening, 8, 24, 25
Flex Projector, 89
Fuller, Richard Buckminster (1895–1983), American

architect, see Dymaxion proj.

G
Gall, James (1808–1895), Scottish cartographer, 45, 46
Gall proj., 45
Gall–Peters proj., 46, 87, 89
Gauss, Carl Friedrich (1777–1855), German mathem-

atician, 16, 22, 23, 27, 51, 60
Gaussian sphere, see osculating sphere
Gauss–Krüger proj., 51, 52, 60, 64, 65, 124, 125, see also

UTM
Gauss–Schreiber proj., 49, 104, see also Gauss–Krüger

proj.
geodesic (geodesic line, orthodrome), 7, 10, 12–14, 21,

22, 33, 34, 37, 50, 53, 61, 77, 102, 106
geodetic datum

horizontal, 24, 25, 43, 51, 53, 61, 63–68, 122
vertical, 118, 119

geographical quadrangle, 10, 18, 27, 28, 79, 87, 107,
108, 131, 132

geoid, 24, 118, 119
geoid undulation, 18, 24, 118, 119
Gilbert, Edgar Nelson (1923–2013), American math-

ematician, 96
Ginzburg, Georgiy Aleksandrovich, Soviet carto-

grapher, 41, 89, 92, 99, 108
Ginzburg III proj., 92
Ginzburg VIII proj., 89
Ginzburg’s azimuthal proj., 41, 92
Ginzburg’s pseudopolyconic projs., 99, 108, 110
gnomonic proj., 37, 41, 106, 108
Goode, John Paul (1862–1932), American cartographer,

86

Goode proj., 86, 103

H
Hammer, Ernst Hermann Heinrich von (1858–1925),

German geodesist, 100, 102
Hammer proj., 100, 101, 108, 110
Hassler, Ferdinand Rudolph (1770–1843), Swiss geo-

desist, 94
Helmert transform, 25, 63–65, 67, 68
homolographic proj., see Mollweide proj.
homolosine proj., see Goode proj.
Hotine proj., 53, 63
hyperboloid proj., 62

I
IMW polyconic, see modified polyconic
interrupted proj., 86, 88, 103
isocol, 32, 39–41, 47, 48, 57, 61, 76, 92, 104, 108, 109

K
Karney, Charles F. F., English geodesist, 22
Kavrayskiy, Vladimir Vladimirovich (1884–1954), So-

viet cartographer, 84, 85, 109
Kavrayskiy V proj., 107, 110
Kavrayskiy VI proj., 85
Kavrayskiy VII proj., 84, 110
Krasovskiy, Feodosiy Nikolayevich (1878–1948), So-

viet geodesist, 24, 51, 124
Křovák proj., 61, 124
Krüger, Johann Heinrich Louis (1857–1923), German

geodesist, 51

L
Lagrange, Joseph-Louis (1736–1813), French mathem-

atician, 96, 110
Lagrange proj., 96, 104
Lallemand, Charles Jean-Pierre (1857–1938), French

geodesist, 94, 132
Lambert, Johann Heinrich (1728–1777), Swiss math-

ematician, 41, 46, 49, 59, 60, 96
Lambert azimuthal equal-area, 32, 41, 59, 64, 100, 101
Lambert conformal conic, 60, 61, 64, 95, 124, 125, 132
Lambert equal-area conic, 59
Lambert equal-area cylindrical, 46
Lambert–Gauss proj., see Lambert conformal conic
latitude

astronomical, 118
geocentric, 9
geographic, 9, 17, 18
parametric, 9, 18
spherical, 8

Lee, Lawrence P., New Zealander geodesist, 51, 104,
106

Legendre, Adrien-Marie (1752–1833), French mathem-
atician, 22

Lichtenstern proj., see polyhedric proj.
Littrow, Joseph Johann von (1781–1840), Austrian as-

tronomer, 96
Littrow proj., 72, 96, 102, see also Lagrange proj.
longitude, 8, 17, 18
loximutal proj., 77
loxodrome, see rhumb line
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lune, 11, 47, 51

M
Maurer, Hans (1868–1945), German cartographer, 95
McCaw, George Tyrrell (1870–1942), British geodesist,

94
mean sea level, 118
Mendeleyev proj., 57
Mercator, Gerardus (1512–1594), Dutch cartographer,

48, 49, 76
Mercator proj., 33, 46, 48–51, 53, 71, 74, 96, 122, 126,

see also Pseudo Mercator
Mercator–Sanson proj., see sinusoidal proj.
meridian convergence, 32, 33, 45, 72, 101
Meshcheryakov, German Alekseyevich (1924–1992),

Soviet geodesist, 109, 110
metacoordinates, 19–21, 26, 40, 43, 47, 48, 50, 51, 53,

61, 71, 92, 102, 106, 108, 122, 124, 125
MGRS, 52
Miller, Osborn Maitland (1897–1979), Scottish carto-

grapher, 49, 104
miscellaneous proj., 70
modified (IMW) polyconic, 94, 132
Mollweide, Carl Brandan (1774–1825), German math-

ematician, 82
Mollweide proj., 71, 82, 85, 86, 100, 108
Molodenskiy transform, 25, 63, 65, 67
Müffling proj., see polyhedric proj.

N
Natural Earth proj., 89
Nicolosi proj., 97
Nordic proj., 101, see also Hammer proj.
normal aspect, see metacoordinates

O
oblique aspect, see metacoordinates
ordinary polyconic, see American polyconic
Ortelius proj., 76
orthoapsidal proj., see Armadillo proj.
orthodrome, see geodesic
orthographic proj., 37, 41, 45, 55, 72, 102
orthophanic proj., see Robinson proj.
osculating sphere (Gaussian sphere), 25, 34, 43, 53, 61,

122–125

P
Pécsi Albert (1882–1971), Hungarian geographer, 101
Pécsi proj., 101, see also Hammer proj.
Peirce, Charles Sanders (1839–1914), American math-

ematician, 104
Peirce proj., 104, 108
perspective conic proj., 54, 55, 93
perspective proj., 26, see also vertical perspective proj.;

central cylindrical proj.; quasi-perspective
proj.; perspective conic proj.

Peters, Arno (1916–2002), German historian, see Gall–

Peters proj.
Plate Carrée proj., 47, 50, 77, 78, 129
plumb line, 118, 119
polyazimuthal proj., 70, 99

polyconic proj., 55, 70, 93, see also pseudopolyconic
proj.; American polyconic

polyhedral proj., 106
polyhedric proj., 79, 94, 106, 128
Postel, Guillaume (1510–1581), French astronomer, 40
Prime meridian, 8, 33
PROJ.4, 63
Projection Wizard, 108
Pseudo Mercator (Web Mercator), 50, 63, 64, 72
pseudoazimuthal proj., 70, 92
pseudoconic proj., 70, 90
pseudocylindrical proj., 70, 74
pseudopolyconic proj., 93, 96
Ptolemy I proj., 57
Ptolemy II proj., 72, 91, see also Bonne proj.
Putnin, š projs., 107

Q
quasi-perspective proj., 44, 49, 55

R
radius function, 36, 41, 54, 90, 92, 93, 96, 126, 132
radius of curvature

Gaussian, 23, 25, 53, see also osculating sphere
meridional, 16, 17, 23
prime-vertical, 17, 23, 116

Raisz Ervin (1893–1968), Hungarian cartographer, 102,
see also Armadillo proj.

rectangular polyconic (War Office proj.), 94, 95
rectangular proj., 28, 31, 70
retroazimuthal proj., 102
rhumb line (loxodrome), 14, 15, 48, 77
Robinson, Arthur Howard (1915–2004), American car-

tographer, 88
Robinson proj., 88, 89, 97, 101
Rosenmund proj., 53, 64
Roussilhe proj., 43, 124

S
ScapeToad, 62
Schwarz, Karl Hermann Amandus (1843–1921), Ger-

man mathematician, 104
Siemon, Karl, German cartographer, 77, 83, 84
Siklósi Miklós, Hungarian cartographer, 62
simple polyconic, see American polyconic
sinusoidal proj. (Mercator–Sanson proj.), 76–79, 83–

86, 91, 101
Snyder, John Parr (1926–1997), American carto-

grapher, 108, 132
Soldner, Johann Georg von (1776–1833), German

mathematician, 50
spherical

lune, see lune
triangle, 11–13, 20, 114, 115
zone, 10, 74, 79–82, 84, 93, 94, 128, 129

Spilhaus proj., 105
Stab proj., see Werner proj.
standard line, 26, 46
stereographic proj., 21, 32, 37–39, 41, 43, 44, 55, 60, 61,

64, 94, 96, 99, 102, 104, 108, 109, 122, 124–
126
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T
Tissot, Nicolas-Auguste (1824–1907), French carto-

grapher, 29, 30, 32, 33, 72, 104, 120
Tissot’s indicatrix, 30, 32
Tobler, Waldo Rudolph (1930–2018), american carto-

grapher, 77, 82
transverse aspect, see metacoordinates
trapezoidal (Donis) proj., 128, 129, see also polyhedric

proj.
trapezoidal projection, 128
true-scale line, see standard line

U
Umbeziffern, 83, 84, 96, 100, 101, see also Wagner trans-

form
UPS, 42, 52, 65
Urmayev, Nikolay Andreyevich (1895–1959), Soviet

geodesist, 85, 89
UTM, 42, 52, 53, 63, 65, 124

V
van der Grinten, Alphons Johann (1852–1921), Ger-

man cartographer, 97
van der Grinten I proj., 97, 98, 101, 108, 110
van der Grinten II proj., 107, see also Bludau

van der Grinten III proj., 107, see also Bludau

van der Grinten IV proj., 97
vertical deflection, 8, 24, 118

vertical perspective proj., 36
Vespucci, Amerigo (1451–1512), Italian explorer, 74

W
WAC, 61
Wagner, Karlheinz (1906–1985), German carto-

grapher, 83–85, 102
Wagner I proj., see Kavrayskiy VI proj.
Wagner III proj., 83
Wagner IV proj., 85
Wagner VI proj., 83
Wagner VII proj., 101
Wagner IX proj., 102
Wagner transform, 84–86, 101, 110
War Office proj., see rectangular polyconic
Waterman proj., 106
Web Mercator, see Pseudo Mercator
Werner (Stab) proj., 91
WGS84, 24, 25, 42, 52, 61, 63, 68, 124, 125
Wiechel proj., 32, 92
William-Olsson proj., 103
Winkel, Oswald (1874–1953), German cartographer,

101
Winkel I proj., 78
Winkel II proj., 79
Winkel III (Tripel) proj., 101, 102, 110
WKT, 63
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