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ABSTRACT

In map projections theory, various criteria have been proposed to evaluate the mean distortion of
a map projection over a given area. Reports of studies are not comparable because researchers use
different methods for estimating the deviation from the undistorted state. In this paper, statistical
methods are extended to be used for averaging map projection distortions over an area. It turns
out that the measure known as the Airy-Kavrayskiy criterion stands out as a simple statistical
quantity making it a good candidate for standardization. The theoretical arguments are strength-

ened by a practical map projection optimization exercise.

1. The scope of this study

All map projections have some amount of distortion but
every cartographer knows that certain mappings result
in a less distorted map than others. This is especially
true for regional maps, where the disadvantageous parts
of map projections can be placed outside of the mapped
area. This phenomenon encouraged the study of map
projection distortion, and researchers needed to
numerically express the quantity of distortion over
a geographical region.

The concepts of map projection distorion were devel-
oped by Tissot (1878) who demonstrated that a map
projection fulfilling certain differentiability conditions
maps every infinitesimal circle on the reference frame to
an infinitesimal ellipse. Another fundamental study of
this field is due to Airy (1861). He also investigated map
distortion on the infinitesimal scale while developing
a minimum-distortion map projection. In addition, he
introduced the concept of distortion value over an area,
which is the cumulated effect of the local distortions
observed in the infinitesimal scale. His formulae will be
listed in section 4.1.

Airy’s approach generated some controversy. First of
all, it does not give enlargements and reductions the
same weight. This leaded to various modifications of
his original formula. The examples include Gyorffy
(1990); Kavrayskiy (1934).

Furthermore, Peters (1979) argued that even Airy’s
and Tissot’s basic concepts are not appropriate, refer-
ring to their formulae as “cartographically implausible”.
Following the approach of Peters (1975), several authors
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have studied map projection distortion using criteria
measuring the distortion of finite distances, areas and
shape developing diverse methods of the practical cal-
culations (e.g. Canters, 2002; Gott et al., 2007). A recent
study (Basaraner & Cetinkaya, 2019) investigated finite
distortion not on random objects but on borders of
countries and continents. The common in these studies
is the assumption that Tissot’s principles are inadequate
to fully describe the finite distortions observed by map
readers. However, Kerkovits (2019) recently demon-
strated using various methods and arguments that this
assumption is questionable. Finite distortions could be
compared to corresponding infinitesimal measures with
an unexpectedly high correlation coefficient (~0.99).
For this reason, this study will not consider the distor-
tion observed directly on finite objects as a completely
separate phenomenon rather as mostly caused by infi-
nitesimal distortions.

Another interesting approach, namely flexion and
skewness defined by Goldberg and Gott (2007) to cap-
ture distortions of finite elements provided essentially
different information on map projections (Kerkovits,
2019). Thus, flexion and skewness are superior to the
method of finite objects to capture the non-affine prop-
erties of map projections. These measures will be dis-
cussed only marginally, readers should refer to
Kerkovits (2018) for further information.

Given that a multitude of alternative map projection
distortion criteria has been proposed, results obtained in
different studies are difficult to compare. Furthermore
some of them only consider angular distortion, others
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calculate areal distortion. The accumulated effect of
these different kinds of distortion can only be calculated
if the measures are on the same scale (i.e. they have the
same dimension and weight). Laskowski (1997b) argued
that a standard unit of distortion (SUD) needs to be
defined to fit the results on the same scale. He suggested
that the result of each calculation method should be
rescaled, so that the distortion value of a well-chosen
reference projection would be unit independently of the
calculation method in question. Laskowski suggested
more candidates as the reference projection but used
only the Plate Carrée projection.

The central aim of this paper is to give
a reinterpretation of current methods using mathema-
tical statistics. This would enlighten which quantities are
on the same scale. Furthermore, it can help the research-
ers in choosing the correct criteria based on strict math-
ematical considerations rather than subjective,
experimental opinions.

For the sake of completeness, it must be noted that
some researchers do not prefer mathematical calcula-
tion of map projection distortion at all. Baranyi (1968)
was the first to develop new mappings using purely
esthetical considerations. Recent studies often use the
software Flex Projector (Jenny et al., 2008) to develop
map projections on the basis of subjective opinions.
While further studies are needed to investigate such
mappings, it is clear that the assumption behind these
developments is again that Tissot’s theorem is not apt to
capture the distortion perceived by the map reader. As
long as Tissot’s theorem can be considered as a sufficient
method to quantify map distortions, the best map pro-
jection according to the mathematical methods should
also have the best distortion pattern. To strengthen this
statement, optimal world maps will be developed, and
their properties will be investigated.

2. Distortion at the infinitesimal scale
2.1. Linear scale, areal scale and angular distortion
The definition of the linear scale [ is:

_dr

=

(1)
where ¢’ is the distance measured on the map and ¢ is the
distance on the reference surface. Unless stated other-
wise, the formulae in this paper do not take any assump-
tion on the reference frame. It may be either a sphere, an
ellipsoid of revolution, or even some more complicated
surface.

The linear scale is dimensionless, as it is the derivative
of a distance with respect to a distance. Furthermore, it

is multiplicative. Kerkovits (2018) stated that applying
two transformations one after the other (e.g. by using an
intermediate sphere) the resulting linear scale will be the
product of the linear scales calculated for the two
mappings.

Distinction between multiplicative and additive
behavior is important (Galton, 1879). Although the
sum of multiplicative quantities may be defined, they
are usually meaningless; and vice versa, the product of
additive quantities should also be avoided for the same
reason. Consequently, one should use the geometric
mean to describe multiplicative data and the arithmetic
mean for additive data.

The linear scale of a map projection depends not only
on the location but also on the direction. To describe the
linear scale at a point, it is usual to analyze the extremal
values of it. In the following, a and b stand for the
maximal and minimal linear scale at a given point.

Practical calculation of map distortion is based on
Tissot’s theorem, and formulae may be found in various
textbooks. The reader may refer to Snyder (1987) for the
formulae of a and b on the sphere and on the ellipsoid of
revolution. Grafarend and Krumm (2006) list general
formulae and derivation for any arbitrary reference frame.

The linear scale / may be expressed in terms of a and
b for any direction:

l= \/a2 cos? 1) + b2 sin* ¥ 2)

where ¢ denotes the angle on the reference frame mea-
sured from the direction of the maximal linear scale.

The definition of the areal scale p is:

p— dS/ p—

P=4s~

where S denotes an area on the reference surface and §'

stands for the area of its image. The dimension is area

divided by area, meaning that it is dimensionless. It is

also multiplicative, as the areal scale of a double projec-
tion is the product of the original areal scales.

Let one arm of the angle 1) on the reference frame be
the direction of the maximal linear scale a. Then the
angular distortion i may be defined independently of the
other arm of ¥ as:

ab (3)

tan?’ b
= @

1= =
tant a

where ¢ is the image of ¥ on the projection plane.
Although recent studies usually calculate angular dis-
tortion using a different formula (i.e. the maximal angu-
lar deviation), this quantity has a strong connection:

a—>b i—l'

2w = 2 arcsin b= 2 arcsin |- (5)

a+ i+1




The author prefers to use b/a for angular distortion
because angular distortion defined in this manner may
be comparable to areal scale (Bayeva, 1987), as they are
now measured on the same scale.

We can see from the formulae that this quantity and
the areal scale are complementary to each other. The
angular distortion is also dimensionless (angles have no
dimension). Its multiplicative behavior can only be
shown on orthogonal projections (i.e. if the images of
parallels and meridians cross at right angles). Using
other general projections, the accumulated angular dis-
tortion i of the two mappings is:

P= 4(712)3/2 [2 <\/z§T2 + ilig) sin? ¢ + 2([1'11'2]5/2
+ \/E) cos’ { — ﬁ(iliz [2cos* { + 2i3 sin* {
+ 2sin?(20) + 2i (sin’( + 2cos’¢)” + i (sin?[2(]
+ isin’[20] + iy[cos(40) — 5})]>r (6)

where i; and 7, are the angular distortions of the original
mappings and ( is the angle on the intermediate surface
between the directions of the maximal linear scales
produced by the two projections. The formula above
was obtained by a computer utilizing symbolic calcula-
tions using the definition of the angular distortion.

This formula means that the resulting angular distor-
tion of a double projection is neither strictly multiplica-
tive nor additive. However, note that i = i;i, if { =0,
which suggests that this distortion may be considered
multiplicative in a general sense.

2.2. The linear scale as a function of areal and
angular distortions

In the previous section, three types of map projection
distortions were expanded. A good map projection always
tries to balance them. For example, even an equivalent
projection should reduce angular distortion as much as
possible. Laskowski (1997a) created his Tri-optimal pro-
jection by optimizing all three kinds of distortion simulta-
neously. But is it really needed to calculate all of them?
Gyorfly (2016) revealed that the right side of equation (2)
may be rearranged to include angular and areal distortions:

1= a?cos? ¥ + b?sin 9 = \/‘1%cos2 Y+ pisin® 9 (7)
It means that there is a strong functional relationship: the
linear scale I depends only on the angular and areal distor-
tions (i and p) and on the direction ¢J. That is, linear scale is
fully dependent on the other two kinds of distortion.
Furthermore, Kerkovits (2019) observed a strong
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(~0.99) linear correlation between the linear scale and
the linear combination of areal and angular distortion.
These two results imply that angular and areal distortions
can totally describe the map distortions on the infinitesi-
mal scale, it is not necessary to calculate the linear scale, as
the other two quantities already include it implicitly.

3. Statistical quantities for a continuous
deterministic population

In this paper, many concepts (like standard deviation,
algebraic and geometric moments) will be borrowed
from mathematical statistics. Although statistics are
usually used to describe stochastic data, the definitions
are also useful to describe populations of deterministic
data, such as the distortions of map projections. The
idea to use statistical quantities for the description of
distortions originates from Gott et al. (2007).

Some generalization is needed to deal with the pro-
blem that the map projection distortion is continuous
over the examined surface, it is a population of infinite
members. However, all members of the population are
known, since they are deterministic. In this paper, all
statistical concepts are redefined by taking random ele-
ments from the population. As the number of the exam-
ined elements increases, the statistical measures of the
sample converge to limiting values. A statistical measure
for a deterministic population over the continuous
interval Q is defined to be this limiting value. E.g. the
expected value or algebraic mean (denoted by angle
brackets) will be the integral mean over the interval Q:

(X) = 1 JQX d0 (8)

(0)
The second algebraic moment about a value c is defined
here as:

(X=9?) ©)

This is the square root of the usual definition. The
reason is to preserve dimensions: it is desired in this
study that statistical quantities should have the same
dimensions as the original values.

The well known formula of the geometric mean is
reformulated here by taking the natural logarithm of
both sides and using logarithmic identities:

Iny, = (InX) (10)

Uy =

4. Measuring global distortion

The distortions I, p and i have a common property: all
are 1 if and only if the corresponding distortion is not
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present at the examined point. If an area is considered,
the question is: How much distortion appears on aver-
age in this area (Meshcheryakov, 1968)? Of course, one
may also seek the extremal values. In this case, the result
is well-defined but might be indeterminate due to the
possible presence of infinite distortion at the edges of
the map. On the other hand, the definition of the mean
distortion over an area (in the following: global distor-
tion value) is not defined consistently throughout the
literature. It is clear that this quantity should average the
deviation of the local quantities from 1. However, this
deviation is usually evaluated in three ways:

4.1. “Subtract one and square” method

Airy (1861) defined the global distortion value E as
(using the notation of this study):

1 (p—17+ (@' —1)
E= Sf[ 5 ds (11)

where S is the examined area on the reference frame,
p = ab is the areal scale and i = b/a is the angular
distortion.

Airy did not use it directly while seeking a minimum-
distortion projection but minimized:

e (a—1)°+(b—1)
E= Ef[ ; s (12)

Both values use the same idea: the deviation from one is
interpreted as the difference between the distortion and
one. To eliminate negative numbers, squared differences
are averaged. This can be viewed as either the quadratic
mean of the deviations or as their second algebraic
moment about 1. The biggest disadvantage is the differ-
ent treatment of enlargements and reductions. It
assumes, for example, that p = 1/2 is a smaller devia-
tion from 1 than p = 2. Gy6rffy (1990) corrected this by
taking p~! instead of p if p< 1.

4.2. Logarithmic functions

Logarithmic measures of map projections are attributed
to Kavrayskiy (1934). It is also an attempt to correct the
inconsistent behavior of Airy’s global distortion value.
Logarithms have the nice property: Inc = —1In(1/c).
Negative signs are still canceled by taking squares.
Identities of logarithms make the definitions using p, i
and g, b essentially equivalent:

2 2
E— lj“/'ln p+In F s
\S 2

S
2 In*a +1n%b
. | 13
\Sf[ T s (13)

This quantity will be referred to as the Airy-Kavrayskiy
criterion.

The formula for the logarithm of the geometric stan-
dard deviation o (Kirkwood, 1979) is quite similar:

Inog = \/<(lnX — (InX))*) = \/<ln2X> — (InX)?

(14)

There is only one substantial difference. Not the loga-
rithm of the geometric mean is subtracted before taking
the squares, but the logarithm of one (which is zero),
indicating the geometric deviation from the state without
distortion (note that In*p = (Inp — In1)?). Therefore,
the second geometric moment of a population X about c is
defined here analogously to Kirkwood as:

Inp,;=1/((InX —In c)2> = <ln2 )§> (15)

Kavrayskiy’s formula gives the logarithm of the second
geometric moment about one. It is necessary, as geo-
metric moments do not express that the dispersion is
some value £ some deviation, rather it is some value
x / some deviation (Limpert et al., 2001). It means, that
1 stands for no geometric deviation. This is not desired,
the state without distortion should be 0. Therefore, the
result is not exponentiated, as opposed to Kirkwood’s
formula.

Kavrayskiy’s formula does not include the linear
scale. The linear scale depends on the direction, so it
must be averaged over all directions:

N 1 [,
E= \/g‘/isfﬁfln IdvdS (16)

where 1 is the direction measured on the reference
frame. This quantity will be referred to as the Jordan-
Kavrayskiy criterion (Fran¢ula, 1980).

4.3. Rational functions

Peters (1975) estimated the global distortion value by
taking random line sections and addressed the incon-
sistency of Airy’s formula by averaging

t/
?_

t/
41

|t —t
|+t

(17)




where t' is the planar distance and ¢ is the distance on
the reference frame. If the length of the line sections are
reduced to an infinitesimal size and the number of the
line sections approaches infinity, this average con-

verges to
1 1 I-1
E=— —_ _—

where ¥ is the direction, in which the linear scale I is
measured.

This approach is not unique. Canters (2002) pro-
posed a similar measure for the areal distortion.
Behrmann (1910) optimized angular distortion i by
minimizing the sum of

.. a .
2w = 2 arcsin b = 2 arcsin
a

i—1
o
There are two remarkable points of these approaches:
This rational function associates enlargements and
reductions of the same size to the same absolute values,
but opposite signs. To eliminate negative signs, values
are not squared, rather their absolute value is taken.

Laskowski  (1997b) combined the different
approaches and created myriads of possible global dis-
tortion values. He listed, for example, a “subtract one
and take the absolute value” method and different var-
iations by either taking the squares or the absolute
values of rational and logarithmic functions. He also
added many original ideas, which are not used in
general.

5. Why to choose Kavrayskiy’s criteria?

There is a continuous debate between researchers
whether to use logarithmic or rational functions for
the global distortion value. The following arguments
will demonstrate that logarithmic functions are from
many viewpoints more convenient than other methods.

5.1. Balance between areal and angular distortion

Bayeva (1987) showed that Airy’s criteria do not give
equal weight to areal and angular distortion. She stated
that the distortion values for areal and angular distor-
tions should be equal on equidistant projections. This
ensures that areal and angular distortions are measured
on the same scale, and their linear combination will be
a meaningful quantity. She demonstrated that this
requirement is fulfilled by the Airy-Kavrayskiy criter-
ion: In?p =1In*i is true if either a or b is one. The
rational function of Peters not considered by Bayeva is
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still a good candidate, as [p — 1|/(p+ 1) = |i — 1|/(i +
1) on all equidistant projections.

5.2. Meaningful operations

We should also investigate whether the requirements of
dimension analysis are fulfilled. The functions proposed by
Airy and Peters both calculate the deviation of a local scale
x from 1 as x — 1 (this is in the numerator of Peters’
function). This operation is not recommended because
linear and areal scales are multiplicative, and angular dis-
tortion can also show multiplicative behavior in certain
cases. The comparison should rather be done by taking
ratios, i. e. x/1.

The integrals in the criteria of Airy calculate the second
algebraic moment, while the Airy-Kavrayskiy criterion is
the logarithm of the second geometric moment. Geometric
measures are preferred for multiplicative quantities
because the product is preferred to the sum to describe
their accumulated effect. Linear, areal, and angular distor-
tions are dimensionless; therefore, the logarithm is an
allowed operation on them. The Airy-Kavrayskiy criterion
(the logarithm of the geometric moment) is also dimen-
sionless but it is additive due to the properties of the
logarithm: In(xy) = Inx + Iny. This additive behavior
and the balanced scaling discussed in the previous section
make it an allowed operation to take the weighted sum of
angular and areal distortions (Bayeva, 1987), i.e. one may
optimize a projection for

1
E= \/gf[qln2p+(1 —¢q)In*idS (20)

where 0 > g > 1 expresses how areal distortion p is
undesirable compared to angular distortion i. g = 1/2
results in good continent shapes, while g = 2/3 opti-
mizes the linear scales (Kerkovits, 2019).

5.3. Invariance to scaling

Canters (2002) demonstrated that a similarity transfor-
mation applied to the map (i.e., a change in the nominal
scale) results in a different global distortion value but
the map-reader does not observe any change in the map
projection. Canters suggested that the least possible
distortion value should be considered.

A rescaling by ¢ changes the areal scale p to pc?. The
minimal areal distortion value of Kavrayskiy’s type is:

E = ngn \/éfflnz(pcz)ds (21)

N
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To calculate the optimal ¢?, E? will be minimized to get
a simpler result. This is sufficient because E may never
be negative. E? will be minimal only if its derivative with
respect to ¢* is zero:

OE* fj‘Zln(pc
R
c2$ fflnpdS—i—fflnc dS| =0 (22)

That is, the two integrals must be opposite numbers:

fflnpdS: —fflnczdS: —Sln¢? (23)
S S

Rearranged:

1
Inc? = S f[lnpds = (Inp) (24)

L e, ¢ % is equal to the geometric mean of the areal

scales. Substitution of ¢ back to formula (21) yields:

- \/éf[(lnp— (Inp))*ds = \/((Inp — (Inp))*)

<1n2p> —

(Inp)*
(25)

This is exactly the logarithm of the geometric standard
deviation. Using the same method, it turns out that the
minimum of the Jordan - Kavrayskiy criterion with
respect to scaling will also be the logarithmized geo-
metric standard deviation of I.

It means, that scale-invariant measures are easily
obtained using statistical methods. This phenomenon
was first observed by Gott et al. (2007) on a finite sample
of linear distortion. On the other hand, such an expres-
sive solution is not found for the criteria of Airy and
Peters.

5.4. Handling infinite distortions

One of the reasons why Peters (1975) advised the use of
rational functions is that the distortions of map projec-
tions may be infinite in certain points. It is impossible to
average a set of numbers if one element is infinite. The
rational function of Peters is bounded, it may never be
greater than one. Infinite distortions are only usual at
the Poles, therefore, it is common to evaluate map dis-
tortions only within latitudes =+ 85° (Francula, 1971;
Gede, 2011).

It is obvious that it is infinitely bad if the linear scale
is infinite. On the other hand, it is also infinitely bad if

the linear scale is zero because the neighborhood of this
point is collapsed into a single point. Airy’s criteria
qualify the first case being infinitely bad but in the latter
case (0 — 1)* = 1. The rational function of Peters maps
both cases to one, and logarithms associate these extre-
mal cases to infinity.

Infinite distortion is rare in map projections, it
appears at distinct points or lines. It is almost certain
(it has one probability) that a random point chosen on
the reference frame has finite distortion. Such popu-
lations still may have well-defined moments (mean,
standard deviation, etc.) as improper integrals.
Kerkovits (2020) showed that the Airy-Kavrayskiy
criterion is Riemann-integrable over the full sphere
for several map projections with pole-lines.
Furthermore, the improper integral was convergent
for two projections with infinite distortions along the
Equator. On the other hand, one may show that the
improper integral does not exist for Airy’s original
criteria over the full sphere using common projec-
tions with pole-line.

Using Kavrayskiy’s criterion, there is no need to
underestimate unbounded, large distortions typically
present near the boundaries of world maps unlike the
rational function of Peters. It is also not necessary to
disregard polar regions beyond latitude 85°. Although it
is possible to construct a projection, for which the Airy-
Kavrayskiy criterion is not convergent, they are not used
in practice.

5.5. No arbitrary units of measurement

Angular and areal distortion are dimensionless.
The second moments were defined in this paper to
have the same dimension, therefore, they are also
dimensionless. The Airy-Kavrayskiy criterion (the loga-
rithm of the dimensionless second geometric moment)
is still dimensionless. This means that no unit of mea-
surement must be defined to express its value. However,
for practical purposes, one may define a unit of mea-
surement for dimensionless quantities, like the degree
for angles. In spite, the standard unit of distortion is
unnecessary, if exclusively logarithmic criteria are used.

Laskowski (1997a) defined the distortion value of the
Plate Carrée projection to be 1 SUD but he mentioned
that the orthographic one may also be a good candidate.
Kerkovits (2020) calculated using another possible defi-
nition of the Airy-Kavrayskiy criterion (1/+/2 times the
formulae listed in this study) that while the global distor-
tion value of the spherical Plate Carrée projection is
a complicated number, the distortion value of the sphe-
rical orthographic projection is exactly unit
Consequently, the Airy-Kavrayskiy criterion expresses



the distortion value relative to this projection. This is
a nice property because this is the mapping that depicts
the reference frame as seen from a distant point.

6. Comparison for small distortions

It was a usual assumption regarding the criteria of Airy
that (Francula, 1971)

1 2 2
(i _Ué+@_1)z(w—m?+w—1f (26)
However, Gyorfty (1990) demonstrated that this con-
nection is only true if the distortions are small (i.e.
I~ 1). This led to the idea of comparing the three
methods (criteria of Airy, Kavrayskiy, and Peters) in
the neighborhood of 1 using series expansion. It turned
out that the criterion of Peters needed a multiplication
by 4 to get comparable results:

(x=1)=(x—1) (27)

In*x~ (x — 1)2—(x—1)3+%(x— 1)4_§(x_1)5
+ ...

(28)

4@11)2* (x—l)z—(x—1)3+2(x71)4

——(x—1)+... (29)

This shows that if x ~ 1 all three criteria return nearly
identical values. The rational function better approxi-
mates the logarithmic distortion value, as they share the
same cubic term while Airy’s original distortion value is
only a second-degree truncation of the series. The same

4
| (X- 1)2
3
2 In% x
el
x+1
1
O L
0 1 2 3 4

(a) Squared functions

Figure 1. Comparison of functions calculating the deviation from 1.
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can be shown for distortion values using absolute values.
The reader may refer to Figure 1, which visually
strengthens the previous statements.

This means that these criteria can be used interchange-
ably provided that the distortion of the projection is small
enough to disregard high degree terms of the series (e.g. on
a cadastral map projection of a small country). Fran¢ula
(1971) also observed that logarithmic functions resulted in
different conclusions only if the map distortion was high.
The standard unit of distortion is still unnecessary because
a simple multiplication could unify the scales of these
distortion values for small distortions.

The original criterion of Airy is much simpler to use.
The formula of the optimal azimuthal projection accord-
ing to Airy’s distortion value, for example, has been
known for centuries (Airy, 1861) but the same problem
is still unsolved for the Airy-Kavrayskiy criterion.
Therefore, it is still a reasonable approach to approximate
the global distortion value by Airy’s approach.

However, Figure 1 also shows, that the squares and
absolute values are not interchangeable even for small
distortions.

7. To square or not to square?

There was a debate between Francula and Peters in the
journal Kartographische Nachrichten on the use of
quadratic distortion values. Peters (1979) stated that
the quadratic distortion values overestimate the extreme
distortions usually present near the pole line and argued
that optimal projections gained using this method are
not visually appealing. Francula (1980) answered that
quadratic formulae were used by more researchers, and
squaring is necessary to enjoy the advantages of the least
squares method.

4
31 [x- 1]
2,
IInx|

) x- 1
1\\\\ |H1
0, v

0 1 2 3 4

(b) Absolute value functions
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Canters (2002) repeated the arguments of Peters and
favored absolute values to squares. He reasoned that the
optimal standard parallel of the equidistant cylindrical
projection according to Airy’s criterion is 61.7°, which is
unacceptable. On the other hand, Canters calculated the
best standard parallel according to the an abslolute-
valued criterion and yielded the more appealing value
of 37.5°. It must be noted that Canters did not mention
an important fact: It was not the only difference between
the two methods that Airy’s is quadratic and his is not, he
also balanced the weights of enlargements and reductions
by taking reciprocals like Gyorfly (1990). Furthermore,
Grafarend and Niermann (1984) obtained a similar opti-
mal value (42°) using the Airy-Kavrayskiy criterion,
which is quadratic.

One could theoretically substitute | In x| for all instances
of In®x in the formulae and expect that extreme distor-
tions would influence the result in a more moderate way.
Even the important |Inp| = |Ini| identity will remain
true for equidistant projections. The ideal standard parallel
of the equidistant cylindrical projection becomes 30.36°.
On the other hand, some arguments can be given against
the use of absolute values:

o Least absolute values are usually favored to least
squares methods if the presence of significant out-
liers usually emerging from measurement errors
are expected. Map distortions are deterministic,
measurement errors are theoretically impossible.
Formula (13) does not hold for absolute values:

[lnp| + [Ini| B

5 max{|lnal; [Inb|}#|Ina|

+|In b| (30)

For the original Airy—Kavrayskiy criterion, the best
projection can be obtained using the Euler -
Lagrange differential equation, and its exact solu-
tion is known for the problem of the best cylindrical
projection for a spherical belt (Gyorfty, 1990;
Kerkovits, 2017). However, the Euler — Lagrange
differential equation yields infinitely many solu-
tions for the best cylindrical projection when
using the absolute values of logarithms. The reason
is the max operator in formula ((30)), which makes
the distortion value independent from the opti-
mized y(¢) function at the polar regions: practically
any meaningful differentiable function can produce
the same distortion value near the pole-lines.

In section 5.3, it was revealed that the minimum
areal distortion is reached when one rescales the
projection with the geometrical mean of areal
scales. Using absolute values, the optimal scaling
number (calculated using the same method as in

section 5.3.) depends on the median of the areal
scales, which is way more cumbersome (though not
impossible) to estimate for an infinite population.

For the previous reasons, it is not recommended to use
the least absolute values method instead of the least
squares method for map distortions.

8. Implementation notes

Kerkovits (2020) did some investigation on the practical
calculation of the proposed Airy-Kavrayskiy criterion.
Because the integral in the formula usually cannot be
expressed in a closed form, a 2D numerical integration
method is needed. Findings in the study cited show that
most general-purpose integration rules produced accep-
table results (~0.1% accuracy) and in general, the two-
point Gaussian quadrature should be sufficient.

9. Optimizing map projection distortion using
different distortion criteria

In the previous sections, it was demonstrated that the
most meaningful quantity to represent the overall map
distortion over an area is the Airy-Kavrayskiy criterion.
To demonstrate the use of this criterion for map projec-
tion optimization and enable a comparison with results
obtained with other criteria discussed in this paper,
a world map projection was optimized according to
four criteria:

(1) Airy’s original: ([(ab — 1)* + (a/b —1)*]/2)
(2) Airy’s modified: ([(a — 1)* + (b — 1)%]/2)
(3) Rational function: (([(ab —1)/

(ab+ )] +[(a/b—1)/(a/b +1)]*)/2)
(4) Airy-Kavrayskiy: ([In*(ab) + In® a/b)]/2)

To minimize the distortion, coeflicients of a fifth
order polynomial were optimized by the Nelder-Mead
method using the same polynomial as Canters (2002):

X = End+ &pA’ + 521§02/\ + &osA® + 5234)2)»3 + 5414)41
(31)

Y = v + Uso(P3 + 012§D)t2 + 050905 + U32<P3)»3
+ vigpAt (32)

where ¢ and A are the spherical latitude and longitude,
respectively.

The result is displayed on Figure 2. Several initial
values were used to confirm that the results of the
Nelder-Mead method are not just local minima. It was
not possible to use the absolute value instead of quad-
ratic expressions, as the optimizaton problem became
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(c) Rational function £=0.2151

Figure 2. The optimal map projection according to various criteria.

undetermined and Nelder-Mead method reported con-
tradicting results for different initial values, hence no
global minimum was found. The optimized area was the
whole globe in the case of the logaithmic and rational
measures, which can handle infinite distortion.
However, calculation was bounded by latitude = 85°
while calculating Airy’s criteria, otherwise the criterion
would have diverged to infinity. Note that the reported
distortion values are only for information, they may not
be compared to each other because of the different
method.

Although the maps are printed in the same nominal
scale, the optimal maps according to Airy’s criteria are
smaller. This could be expected, as these criteria prefer
reductions to enlargements. Furthermore, it is visible by
naked eye that they did not give areal and angular
distortions the same weight: the first map rather distorts
areas but shapes of continents are more or less pre-
served. In the second map areal exaggeration is less
visible but it has considerable angular distortion. Just
as expected from the theoretical calculations, the
rational and logarithmic measures balanced angular
and areal distortion. Moreover, they yielded similar
results, just as it was expected in section 6. The only
visible difference is at the high latitudes where extreme
distortion occurs. Here, the rational function did not

(d) Airy - Kavrayskiy £=0.3315

give these extreme distortions enough weight and
allowed to enlarge the area of Greenland a bit more
than the logarithmic measure did.

At first glance, it is clear that even the optimal map
according to Kavrayskiy’s criterion cannot be used for
serious purposes. Careful examination shows that the
continents, in general, have good shapes, the overall
map distortion is low. The only problem is the strange
shape of the map frame. Gyorfty (2016) presented
a mathematical way to obtain considerably better out-
line for the map while losing only 1% from the Airy-
Kavrayskiy criterion. Therefore, it is possible to develop
good-looking map projections using only objective,
mathematical methods. This outline correction is not
needed for regional maps: their outline is determined by
the map frame. There were several successful studies to
develop good-looking and low-distortion regional maps
using only the Airy-Kavrayskiy criterion. (Gyorffy &
Klinghammer, 2004; Kerkovits, 2019)

10. Some remarks on the differences between
infinitesimal and finite distortion

A map projection is not an affine transformation.
Nevertheless, the non-affine properties of the projections
are not effectively captured by the popular method of
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comparing finite objects with their reprojected image.
The recently introduced flexion and skewness seem to
be a better alternative. Kerkovits (2018) examined these
quantities, provided general formulae for the sphere and
the ellipsoid of revolution, and demonstrated that these
quantities have dimension and are additive. Unlike the
linear and areal scales, they do need a unit of measure-
ment; their dimension is 1/distance. This means that no
unit of measurement can transform them to be compar-
able to traditional distortion values. It is not meaningful
to ask whether a map projection has more skewness than
angular distortion. The attempt of Goldberg and Gott
(2007) to express flexion and skewness in SUD relative to
the Plate Carrée projection lacked proper dimension
analysis. Being additive quantities, it is not recom-
mended to calculate the geometric moments of flexion
and skewness, their algebraic moments are preferred.
Note that it is impossible to calculate the logarithm of
flexion and skewness because no transcendental func-
tions are defined for quantities with dimensions.

11. Conclusions

To estimate the global distortion value of a projection, it
is not necessary to use myriads of possible formulae as
proposed by Laskowski (1997a). There are three kinds of
map distortion (linear, areal and angular), from which
the first one is dependent on the latter two. The loga-
rithm of the second geometric moment about one (that
is, the Airy-Kavrayskiy criterion) is a proper statistical
quantity to represent the deviation of the map projec-
tion from an undistorted state. Angular and areal dis-
tortion values over an area are both dimensionless and
they are by nature on the same scale if using the Airy-
Kavrayskiy criterion. There is no need to define
a standard unit of distortion to calculate a weighted
average of angular and areal distortion.

The author of this study agrees that the best choice of
a map projection heavily depends on the map theme.
However, the distortion of map projections ought not to
be a subjective quantity. We have exact, rigorous math-
ematical formulae to calculate linear and areal scales,
which have been well known for centuries. Using defini-
tions borrowed from mathematical statistics, the
description of map distortion over an area should be
well-defined. Utilizing the correct statistical measures
and checking formulae according to dimensional analy-
sis, the usage of Laskowski’s SUD becomes obsolete.

It was demonstrated that the Airy—Kavrayskiy criter-
ion is strongly connected to the definition of the standard
deviation. If one seeks a low-distortion map projection
according to this quantity one may be sure that not only

the map distortion but also the variance of map distor-
tion will be as low as possible within the constraints of
the optimization. This means that one should not expect
that extreme distortions will occur within large parts of
the optimized area unless the optimization method does
not allow better distortion distribution.

The map with the lowest possible distortion is not
always the best map for all purposes. Other factors (like
the shape of the map outline) are also important but
such constraints can be considered mathematically dur-
ing optimization either by constraining the coeflicients
or by solving differential equations (see e. g. Canters,
2002; Gyorfty & Klinghammer, 2004).
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