Pseudoconic projections

General properties

Pseudoconic projections in normal aspect share the following properties:

- Latitudes are circle arcs.
- The centres of these circles are along the central meridian (which is set to the y axis of the
projection coordinate system)

As latitude lines are circle arcs, we can define a p(¢) radius function. The position of the circle arcs can
be defined either by the c(¢) distance of the circle centre or the t(¢) distance of the intersection of the
circle and the y axis from the origin of the coordinate system (Figure ...). Two of these values always
define the third one as c(@) = t(¢) + p(p).
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Figure ... Spherical and projected coordinates of a point using pseudoconic projections.

The y angle of a vector pointing from the centre of a latitude circle to an arbitrary (¢, 1) point is a
function of @ and A: y = y (¢, 1).

Therefore a pseudoconic projection can be defined by three functions: its p(¢) radius function, one from
c(p) or t(¢), and the y (¢, A) function. The Cartesian coordinates then can be calculated as follows:

x = p(g)siny(p,2)
y = c(@) —p(p) cosy (g, 1)
Distortions along the graticule lines

For developing the distortion formulas the partial derivatives of the above general projection formulas
are needed:

dx dy
a=pacosy
dy Oy _
a=pasmy
dx dp . dy
%=%smy+ p%cosy

dy dc dp N ay .
30~ dp d(pcosy pa(psmy

Therefore:



ax\* (63/)2
—_— _|_ —_—
. (6/1) daA _p 6_)/
Cos @ cos @ dA

I = <6x)2+<6y)2_ (dp N dy >2+(dc dp 4 ay )2_
= \a 30) = d(psmy pa(pcosy a0 dgocosy pa¢51ny =

cot® =

From this,

sin @ =

SO

-y

+( 6y)2+<dc> ch dp +2dc ay .
pa(p o do do cosy d(ppa(p siny

dxdx  dydy
dAdp  0dAdgp
9x0y _0xdy
dAde Jdeda
d dp . d ady . dc d dy
pazcosy(df;smy+ p%cosy) +pa—)/{smy<d(p dg)cosy+ pa—smy)
dy (d dp n dy ) ay (d_p " ay )
palcosy do d(pcosy pa siny pallsmy d(psmy pa cosy
d dc
az;+d(psmy
- _Ecos _dp
dp “°°Y ~dg
d dp
1 ~ 1 ~ dgocosy—%
V1 + cot2 0

“Real” pseudoconic projections

A more strict classification of projections use the term pseudoconic on projections that have concentric
circle arcs as latitudes. It means, that c(¢) is constant, therefore the formulas for k and cot © are simpler:
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Bonne Projection

The most common example of this group is the Bonne Projection. This projection has true scale parallels
(h = 1), and true scale central meridian (k;—o = 1). Assin ® = 1, when A = 0 (the central meridian is
always an axis of symmetry, so the parallels cross it at right angle), k;—, = 1 means that
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We can set constant part of p(¢) to have a given ¢, standard parallel free of distortions. As all parallels
are true scale, we only have to make sure that 0 is 90° (i. e. cot ® = 0) all along ¢:
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this can be zero when the nominator is zero: —p sin ¢ + cos ¢ = 0. Substituting ¢ = ¢, we get
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So finally:
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If we examine the area distortions, as h = 1 and k = —%£ = L (as a —1), we get
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which means that this projection is equal area.

The Bonne projection was developed in the 16" century. It is used for small-scale regional maps such
as continent parts (e.g. West Africa). Changing ¢, changes the shape of the map. A special case, @5 =
90° results in a heart-shaped world map (Cardioid or Werner-Stabius projection).

Figure .... Bonne projection with ¢s = 45° (left) and ¢, = 90° (right).

... to be continued!!!!



