
Cylindrical projections 

General properties 

Cylindrical projections in normal aspect share the following properties: 

- Parallels (latitudes) are straight parallel lines 

- Meridians are straight parallel lines 

- Parallels and meridians are perpendicular to each other 

- The meridians are equally spaced 

- The graticule is symmetric to the Equator 

For cylindrical projections in oblique or transverse aspect, a meta coordinate system can be defined with 

its metapole in 90° distance of the projection centre (The projection centre is in the intersection of the 

meta-Equator and the meta prime meridian). In this case the properties above are true to the metaparallels 

and metameridians. 

These properties imply the following general projection equations for cylindrical projections in normal 

aspect: 

𝑥 = 𝑐(𝜆 − 𝜆0) 

𝑦 = 𝑦(𝜑) 

𝜆0 is the central meridian. y is an odd function: 𝑦(−𝜑) = −𝑦(𝜑). The c constant can be chosen 

arbitrarily, but generally 0 < 𝑐 ≤ 1. 

Distortions along the graticule lines 

Note that x only depends on the longitude, while y only depends on the latitude, therefore 
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Let’s use the substitution 𝑐 = cos 𝜑𝑛. Then ℎ =
cos 𝜑𝑛

cos 𝜑
, which means that the scale along the parallel 𝜑𝑛 

is one, so 𝜑𝑛 is the true scale (or standard) parallel. 

The projection equations for the normal aspect therefore become: 

𝑥 = cos 𝜑𝑛 (𝜆 − 𝜆0) 

𝑦 = 𝑦(𝜑) 

The various types of cylindrical projections only differ in their 𝑦(𝜑) projection formula. 

For any other aspect, the (𝜑∗, 𝜆∗) meta-coordinates can be calculated from (𝜑, 𝜆) and substituted into the 

equations above instead of the real 𝜑 and 𝜆. 



The intersection angle of the graticule lines, Θ = 90° always, as they are perpendicular by definition. 

So, just like in the case of azimuthal projections, either 𝑎 = ℎ, 𝑏 = 𝑘 or 𝑎 = 𝑘, 𝑏 = ℎ. The criteria of 

comformality is ℎ = 𝑘, while the criteria of an equal-area projection is ℎ =
1

𝑘
. 

Central perspective cylindrical projection 

Note: This projection has no practical use due to its high distortions, but briefly discussed here because 

this is the “original” cylindrical projection; the general properties, and the name “cylindrical” comes 

from this projection. 

 

Figure 10. Construction of central perspective cylindrical projection. 

Let’s place a cylinder around a unit sphere with its axis matching the axis of the globe (Figure 10). The 

radius of the cylinder is not larger than the radius of the globe. Now let’s project the surface of the sphere 

to the cylinder from the sphere centre. The distance of the projected point from the plane of the Equator 

becomes the 𝑦(𝜑) coordinate. Due to the similarity of the triangles OFP and OF’P’, the following 

equation can be constructed: 
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where 𝑂𝐹′ = 𝑦(𝜑), 𝐹′𝑃′ = cos 𝜑𝑛, 𝑂𝐹 = sin 𝜑 and 𝐹𝑃 = cos 𝜑, so 
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threrefore 

𝑦 = cos 𝜑𝑛 tan 𝜑 

The perspective cylindrical projection can be constructed using a point of perspective differen from the 

sphere centre (but along the axis of rotation). These projections, however, are no longer symmetric to 

the Equator. 

The projection is not often used, but it appears in the Russian “Атлас мира” (Atlas of the World). 

Cylindrical projection with true scale meridians 

Let’s start with the formula for true scale meridians: 



𝑘 =
𝑑𝑦
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= 1 

This implies the formula: 𝑦 = 𝜑 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where the constant is zero, because 𝑦(𝜑) has to be an odd 

function. Therefore the equations of this projection in normal aspect are: 

𝑥 = cos 𝜑𝑛 (𝜆 − 𝜆0) 

𝑦 = 𝜑 

The name of the projection is Equirectangular Projection. If the standard parallel is the Equator (𝜑𝑛 =

0), its name is Plate Carrée or Geographic Projection. Notice that while GIS systems use metric 

coordinates in Equirectangular Projection, degrees are used in the case of Geographic Projection.   

This projection is neither equal-area nor conformal. In normal aspect, it can be used for small-scale 

mapping equatorial countries, regions. It also can be used in oblique aspect for regions that are along a 

great circle. In this case the meta-Equator of the oblique aspect has to match that great circle. 

The transverse form of the Geographic Projection is called Cassini or Cassini-Soldner Projection, and 

its ellipsoidal version was used in topographic mapping in the past. In traditional globe making, the 

printed globe segments (gores) are also in Cassini projection. 

 

Figure 11. Globe gore set in Cassini projection. (Rand McNally & Co., 1887) 

Equal-area cylindrical projection 

Now let’s start from the criteria for an equal-area cylindrical projection: ℎ =
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𝑘
.  
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which means, that 
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The projection was developed by Lambert in 1772. Special versions were later introduced by others 

(Behrmann, 𝜑𝑛 = 30°, 1910; Gall–Peters, 𝜑𝑛 = 45°, 1855/1967). An interesting version is the “square 

world” created by Waldo Tobler, with the setting cos 𝜑𝑛 =
1

√𝜋
 (therefore 𝜑𝑛 ≈ 55°39′14′′). With this 

setting, the full globe is mapped to a square. 

In GIS systems this projection is usually known as Lambert Cylindrical Equal-Area. 

Cylindrical conformal projection 

To create a conformal projection, let’s start with the criteria of conformality: ℎ = 𝑘. As ℎ =
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which leads to the formula: 
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depending on whether angles are counted in radians or degrees. 

 

Note: To solve this, we need the indefinite integral (a.k.a. primitive function) of 
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This projection was introduced by Gerardus Mercator in 1569, and named after him as the Mercator 

Projection. It had an extremely important role in sea navigation, as this is the only projection that shows 

the rhumb lines or loxodromes (spherical curves with constant azimuth) as straight lines. Therefore, 

planning a sea route between two points was easy: a line connecting the points on Mercator’s map was 

a loxodrome, so sailors only needed to keep the bearing of this line by a compass to keep the course. 

As the loxodrome is usually not the shortest route between two points, with the emerge of global 

positioning techniques this projection lose its importance until the era of web maps. Nowadays most of 

web map services (like Google Maps) use a slightly modified version of this projection, called Web 

Mercator. In this projection, the WGS 84 ellipsoidal coordinates are directly used in the spherical 

formulas of the Mercator projection. 

The ellipsoidal version of Mercator projection is extensively used in topographic mapping in transverse 

or oblique aspect. The transverse aspect is the basis of the Universal Transverse Mercator (UTM) and 

the Gauss-Krüger projection systems. The oblique version is the basis of the Swiss and also the 

Hungarian National Grid (EOV).  



 


