
Conic Projections 

General properties 

Conic projections in normal aspect share the following properties: 

- Parallels are concentric circle arcs 

- Meridians are straight lines, crossing in one point, the pole 

- Parallels and meridians are perpendicular to each other 

- Angles at the pole are mapped with reduction: 𝜆′ = 𝑛𝜆 where 0 < 𝑛 < 1. 

For conic projections in oblique or transverse aspect, a meta coordinate system can be defined with its 

metapole matching the projection centre, and the properties above are true to the metaparallels, 

metameridians and the metapole. 

Due to these properties, conic projections can be defined by their 𝑝(𝛽) radius function (similarly to 

azimuthal projections) and the n angle proportion constant (Figure 12). 

 

Figure 12. Graticule of normal aspect conic projections 

The general projection equations of a normal aspect conic projection are therefore: 

𝑥 = 𝑝(𝛽) sin(𝑛𝜆) 

𝑦 = −𝑝(𝛽) cos(𝑛𝜆) 

Let’s notice that a conic projection not necessarily projects the pole into a single point. If 𝑝(0) > 0, the 

pole appears as a circle arc. 

Distortions along the graticule lines 

The general formulas for the scale factors along the parallels (h) and the meridians (k) can be simplified 

after expressing the partial derivatives from the projection formulas above, knowing, that 
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Perspective Conic projection 

The Perspective Conic projection can be constructed by placing a cone with its axis matching the 

sphere’s axis of rotation, and projecting the surface of the sphere to the cone from a point along the axis 

(Figure 13). After unfolding the cone, the projected image will be similar to the one on Figure 12. 

 

Figure 13. Perspective conic projection 

The 𝑝(𝛽) radius for a given β polar distance can be calculated as follows: the triangles QTP and QT’P’ 

are similar, so … 
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where 

𝑇𝑃 = sin 𝛽 

𝑇′𝑃′ = 𝑝(𝛽) sin 𝜀 

𝑄𝑇 = 𝑓 + cos 𝛽 

𝑇′𝐶 = 𝑝(𝛽) cos 𝜀 

so 
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𝑐 = 𝑄𝑇′ + 𝑇′𝐶 =
𝑝(𝛽)[sin 𝜀  (𝑓 + cos 𝛽) + cos 𝜀 sin 𝛽]
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finally 

𝑝(𝛽) =
𝑐 sin 𝛽

sin 𝜀  (𝑓 + cos 𝛽) + cos 𝜀 sin 𝛽
 

The Perspective Conic projection is not often used because its distortions are higher than the other conic 

projections. 

Equidistant Conic projection 

Let’s construct a conic projection that has true scale meridians. This means that  
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which implies 

𝑝(𝛽) = 𝛽 + 𝑝0 

where 𝑝0 is a constant that can be chosen arbitrarily (along with the n angle proportion constant). As 

𝑝(𝛽) = 𝑝0, if 𝛽 = 0 (which is only at the North Pole) it means that 𝑝0 is the radius of the polar arc. 

In practical use the values of 𝑝0 and n is not directly set but calculated from the position of the true scale 

latitudes of the projection. A conic projection can usually have two true scale parallels (sometimes also 

called “standard parallels”). Let’s mark their polar distance by 𝛽1 and 𝛽2. As these are true scale 

parallels, their length on the sphere and on the map should be equal. 

The length of 𝛽1 parallel on the sphere is 2𝜋 sin 𝛽1, while on the map it is 2𝜋 𝑛 𝑝(𝛽1) = 2𝜋 𝑛(𝛽1 + 𝑝0). 

Therefore 

sin 𝛽1 = 𝑛(𝛽1 + 𝑝0) 

and similarly 

sin 𝛽2 = 𝑛(𝛽2 + 𝑝0) 

If we subtract the two above equations we get 
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and we can express n: 
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on the other hand, 
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so 



sin 𝛽1 (𝛽2 + 𝑝0) = sin 𝛽2 (𝛽1 + 𝑝0) 

from which 𝑝0 also can be expressed: 
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The Equidistant Conic projection is sometimes credited to Joseph Nicolas De l’Isle who extensively 

used it in his maps in the 18th Century. This projection is very often used for mapping regions that lie 

between the tropics and the polar circles. 

Conformal Conic projection 

In a conformal conic projection the scale factor along the meridian always equals the scale factor along 

the parallel (h = k): 
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To find the values of d and n, let’s set the polar distance of the true scale parallels to 𝛽1 and 𝛽2. The 

length of the 𝛽1 parallel is equal on the sphere and on the map: 
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similarly: 
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If the two equations above are divided by each other: 
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Now let’s use the logarithm of both sides: 
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The value of d can now be expressed either from 𝛽1 or from 𝛽2: 

𝑑 =
sin 𝛽1

𝑛 tan𝑛 𝛽1
2

=
sin 𝛽2

𝑛 tan𝑛 𝛽2
2

 

This projection was developed by Johann Heinrich Lambert and is known as Lambert Conformal 

Conic or simply LCC projection. This projection is very often used in topographic mapping and for 

aeronautical charts. 

Conic Equal-Area projection 

To preserve areas 𝜏 = ℎ𝑘 sin Θ = 1 is required. As Θ = 90° therefore sin Θ = 1 for all the conic 

projections, this simplifies to ℎ𝑘 = 1.  
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this is again a separable differential equation; its solution: 
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Let’s use the sign 𝑝0 for the radius of the pole arc [ 𝑝0 = 𝑝(0) ]. Then, if 𝛽 = 0, 
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This can be in the formula of 𝑝(𝛽)2: 
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To find the values of 𝑝0 and n, let’s set the polar distance of the true scale parallels to 𝛽1 and 𝛽2. The 

length of the 𝛽1 parallel is equal on the sphere and on the map: 
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and similarly 
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Subtracting these two equations we get 
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now we can express 𝑛𝑝0
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so finally 
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The name of this equal area projection is “Albers Equal Area Conic” after the German mathematician 

Heinrich C. Albers who developed it in 1805. It is extensively used in Canada and in the United States. 

 


