18.feladat: Műveletek domborzatmodellekkel

Feladat: Ebben a feladatban készítünk egy olyan hipszometrikus térképet domborzatárnyékolással Nyugat-Európáról, amelyen a holland mélyföldek nem fognak "belesüllyedni" a tengerbe. Emellett domborzatárnyékolás, szintvonalrajz, magassági profil és 3D nézet is készüljön!

Problémafelvetés: Az SRTM nem tartalmaz mélységi adatokat a tengerekről (kivétel részben a part menti self területek). Az ETOPO1 egy olyan globális domborzatmodell, amely egy perc (kb. 2 km) térbeli felbontással tartalmaz magassági illetve mélységi adatokat az egész Földről. Többféle forrásból állították össze, részletek a hivatalos honlapjukon:

http://www.ngdc.noaa.gov/mgg/global/global.html

Ebből készítettem egy kivágatot, ETOPO1.TIF néven, mellékeltem mellé egy országhatárok állományt is (COUNTRIES_WEST_EUROPE.SHP).

Készítendő egy olyan raszteres térkép, amelyben a mélyföldek zöldjét külön tudom állítani a tenger kékjéhez képest, vagyis elkülönülnek a szárazföldi és tengeri területek.

Megoldás, magyarázat

Adjunk hozzá új raszteres réteget, a Layer →Add Raster Layer menüből.

Készítsünk hipszometrikus térképet. A **Properties** ablak *Style* fülén válasszuk a Singleband Pseudocolor-t (Egysávos álszínes). A zöld + jel segítségével adjunk hozzá néhány szintvonal kategóriát, legyenek ezek (-1000, -200, -100, 0, 100, 200, 500, 1000, 2000 m). A Color interpolation -t pedig állíthatjuk akár Linear-ról (színátmenet) Discrete-re (diszkrét színeloszlás, klasszikus magassági színezéses térkép). A kettő között az a különbség, hogy a lineárisnál a megadott két szín között átmeneti színeket is használ, míg a diszkrétnél csak a megadott színeket. A Labelhez jelmagyarázat készíthető.

A következő lépés a vektoros határ réteg megnyitása, és összevetése a magasságokkal. Tegyük átlátszóvá részben a vektoros réteget, **a Properties**, *Style, Layer rendering* bekezdésnél, *Layer transparency*.

A) Megoldás

A feladat egyszerűen is megoldható. Ehhez nyissuk meg a kivágatot a domborzatmodellből, illetve a countries_west_europe (határok) réteget. Kattintsunk a Raster menüben, az Extraction→Clipper modulra. A modullal

raszteres rétegekből lehet kivágni részleteket, például téglalapszerűen, vagy egy vektoros réteggel akár szabálytalan részleteket.

Input fájl ebben az esetben a domborzatmodell, állítsuk be a mentés helyét is. Ha a Clipping mode-nél az Extent-et választjuk, téglalap alakú területek vághatók, itt vagy begépeljük a sarokkoordinátákat, vagy a térképre rajzolunk egy box-ot. Ebből a QGIS automatikusan kinyeri sarokpontok koordinátáit. Másik lehetőség **a Mask layer**. Ezt fogjuk most használni a countries-zel. Ne felejtsük el megadni a Null data values, ott megadható, hogy azokon a területeken, ahol nincs semmi (nálunk ez a tenger), ott mi legyen a pixelérték. Válasszuk pl. a -999999999.000000-et, ezt felismeri majd a szoftver és átlátszónak értelmezi. A művelet eredménye egy új raszteres réteg, amelyen átvettük az eredeti rétegről a szárazföldek magasságait, a tengereken mindenhol pedig a pixelérték -999999999. Így ez a rész átlátszik majd ha az eredeti ETOPO1 réteg fölé helyezzük.

Folytassuk lentebb a B) megoldás után!

B) Megoldás: Ugyanez Raster Calculatorban

A vektoros rétegből rasztereset szeretnénk készíteni, de mielőtt ezt megtennénk, össze kell olvasztani az egyes országhatárokat. **Vector menü, Geoprocessing Tools, Dissolve.** Ezek után a kontinenshatárokat tartalmazó rétegünkből gyártunk raszteres réteget. Ezt a funkciót a **Raster menü > Conversions> Rasterize (Vector to raster)** lehet elérni. A bemeneti állomány (Input layer) beállítása után A fixed value to burn legyen 1. Output raster size units (pixel), Width és height olvassuk ki az etopo1 réteg Properties-ből (source fül). Output extent itt kiválasztjuk a réteget (etopo1). Assigned to a specified no data value: lehet o. Advanced: Output data type Float32 bites tif. és a Rasterized: az új fájl neve. Kapunk egy raszteres állományt (o_1.tif), amely a szárazföldeken mindenhol 1 a tengereken pedig o értéket tartalmaz.

Ezt összeszorozva az ETOPO1-el, (Raster calculator-ban hajtjuk végre a műveletet) az óceánok eltűnnek a fájlból, és a szárazföldek megőrzik eredeti magasságukat. etopo1@1*0_1@1

Mindkét állomány 32-bite tif, ezért csak egy csatornája van (@1). Állítsuk még be a kimeneti állomány fájlnevét és CRS-sét.

	K	Raster calculator	? ×
	Raster bands	Result layer	
	"1@1" "booder conter@1"	Output layer	
	"etopo 1@1"	Current layer extent	
		X min -8,32402 🗘 XMax 11,97141	÷
		Y min 47,99693 Y max 61,42117	
		Columns 3000 🔷 Rows 3000	÷
		Output format GeoTIFF	•
		X Add result to project	
	▼ Operators		
	+ * sqrt	sin ^ acos (
	- / cos	asin tan atan)	
	Pastar rale later surressian		
	"border_raster@1" / "border_raster@1"		
	Expression valid	ОК	Cancel
	QGI	S 2.4.0-Chugiak	- 0 ×
roject Edit View Layer Settings Plugins	Vector Raster Database Web Processing Help		
D 🗁 🖥 🛃 🖵 🔍 🕅			📫 🔎 ▪ 🚺 №?
// ₿ ጜ ጜ / ֎ ₪ ≥	en la	sw 🗙	
* * 7 % * 7 % * *	$O \mathbf{L} \ \mathbf{p} \ \mathbf{x} \ \mathbf{y} \ \mathbf{o} \ \mathbf{v} \ \mathbf{x} \ \mathbf{v} $		
Layers			
-3.15017 1163.53			
borders_dissolved		17	
borders			the last
🗨 🗉 🖓 etopo1			22
2			3 TIMES -
3	F 3		3
	了他们		
9 0	- 3		
° ▼	1/8	and the second of the	
		ALC: NOT	
M3	1.5		
Identify Results			A State of the
View Tree			12/2/25
Feature	1		AN AL
⊕ (Derived) Band 1	1	and the second se	
	Help		
Mode Current layer	Auto open form		
		ordinate: 2.07,61.23 Scale 1:4 220 4	40 K Render EPSG:4326
			2014.10.21.
zután már csak an	nyi a dolgunk, hogy beá	llitjuk a hipszometriát a korábba	n ismertetett

módon, (mélyföldek legyenek sötétzöldek), és a rétegkezelőben felülre helyezzük a csak szárazföldeket tartalmazó réteget.

Adjunk hozzá domborzatárnyékolást is!

A domborzatárnyékolás létrehozására számos lehetőség kínálkozik már a QGIS 3-ban. Fontos, hogy olyan vetületet válasszunk, amelyben a méterben vannak a koordinátáink. (pl. UTM stb.) Nézzük meg ezeket! Az első és legegyszerűbb:

1.) Properties-ben

Duplikáljuk a domborzati rétegünket (újra behívjuk vagy, jobb klikk Duplicate Layer.) Nyissuk meg a Properties ablakot az új rétegen. A **Symbology>Render Type>Hillshade.**

Beállítható a megvilágítás iránya (azimuth), a fényforrás magassága (**altitude**), és egy Z factor, amely méterrendszerű koordinátáknál 1.

A Z factor-t, ami a vertikális túlmagasítást jelenti. Tulajdonképpen két érték jöhet szóba, ez a réteg vetületétől függ, ezt ellenőrizzük mindig a Properties (general beállításainál). Ha a réteg vetülete olyan, hogy a vízszintes koordináták földrajzi koordináták, vagyis <u>fokban</u> vagyunk, akkor a pl. Z=0,001. (0,0005–0,001 között). Ha méterben megadott a vízszintes koordináták, akkor pl. Z=1 (1–5 között). 1-nél nincs túlmagasítás.

A megvilágítás irányát az azimuth-nál, a vertical angle-nél pedig a nap magasságát lehet megadni. A térképészetben hagyományosan a megvilágítás iránya ÉNY (**315°**) és a "Nap" **45°** magasan áll. Oka: régen a rajzolók többsége jobb kezes volt, ha a fény a papíron a bal felső sarokból érkezik, akkor az ábra jobb alsó részét kell árnyalni, ami a jobbkezeseknek "kézre állt". Miután megvan az árnyékolás réteg többféleképpen is kombinálhatjuk a rétegszínezéssel, Helyezzük a rétegszínezés fölé ezt a réteget, és Properties, Transparency fülnél tegyük átlátszóvá 30-40%-ban.

A másik módszer, hogy az árnyékolás réteget "összeolvasztjuk" a rétegszínezéssel. **Properties Style Color rendering:** *Blend mode: Multiply.*

A Brightness és s Contrast ízlés szerint állítható. (Ne legyen túl sötét a kép, mert akkor a névrajz olvashatatlanná válik!)

2.) A **Raster** menüben **Analysis** almenüjében a **Hillshading** jelenti a domborzatárnyékolás hozzáadását.

Itt többféle dolog is állítható: A fényforrás helye, magassága, a vertikális túlmagasítás értéke, és a méretarány (horizontális és vertikális méretarány egymáshoz való viszonya).

Compute edges: A széleken is számítsa ki az árnyékolást.

Use Zevenbergen-Thorne fomula instead of Horn's one: Zevenbergen-Thorne módszert használja, lásd lentebb.

Combined shading: A ferde és a lejtőszög alapján számított árnyékolás kombinációja Multidirectional shading: Több fényforrást is felhasznál: 225°, 270°, 315°, és 360° irányból.

Elmélet:

A QGIS-ben kétféle algoritmus közül választhatunk, ha a domborzatárnyékolást szeretnénk kiszámolni: az első a **Zevenbergen–Thorne-algoritmus,** a másik a **Horn-formula**. Mindkét esetben hasonló az elv. A megadott pixel körüli értékekből számítja ki az adott pontra az árnyékolást (a lejtőszög alapján). Azt szokás mondani, hogy a Zevenbergen-Thorne módszere a simább, lankásabb felszínekre jobb, míg a Horn-féle módszer a hegységi, "érdesebb", változatosabb felszínekre.

Itt lehet olvasni részletesebben a két módszerről angolul:

https://macaulay.webarchive.hutton.ac.uk/LADSS/documents/DEMs-for-spatialmodelling.pdf

Készítsünk szintvonalrajzot!

$Raster \rightarrow Extraction \rightarrow Contour.$

Beállítható, hány méterenként kövessék egymást a szintvonalak, és belekerüljön-e a szintvonal magassága az attribútum táblába. Jelenleg csak állandó szintvonalköz adható meg.

3D megjelenítés

A QGIS 3-as verzióiban végre van lehetőség 3D-s megjelenítésre! A 3D megjelenítő ablak View menü > New 3D View ablakban érhető el.

Vektoros és raszteres adatok (és domborzatmodellek) egyaránt megjeleníthetők benne.

Ez a példa a domborzatmodellek megjelenítésére fog vonatkozni, a vektoros adatok 3D-s megjelenítését egy másik fejezetben tárgyalom.

Legyen egy hipszometrikus színezéssel ellátott domborzatmodell behívva a QGIS-be. Elindítjuk az új 3D nézetet. Navigálni a 3D ablakban az egérrel lehet, lehet, vagy a navigációs eszközzel. Az iránytűvel forgatunk (az égtáj beállítható)

Bal egérgomb: mozgatás/eltolások, CTRL+bal egér: a kamera forgatása

Egérgörgő: görgetve: nagyítás/kicsinyítés, lenyomva döntés, a kamera forgatása, Jobb egérgomb lenyomva kicsinyítés/nagyítás

Az aktuális nézet egy raszteres képként (pl. jpg, png) kimenthető (ez tulajdonképpen egy printscreen).

A **Configure**-ban a következők állíthatók:

A Terrain Type: Legyen a Flat Terrain helyett a DEM (Raster layer) domborzatmodell (Elevation: pl. etopo1). A **Vertical Scale** a vertikális túlmagasítást adja meg. Ez általában 3-5-(8) között adjuk meg, mivel az 1 kevés, nem látszik belőle szinte semmi. Értéke függ a terület jellegétől. Arra kell ügyelni, hogy elkülönüljenek az egyes domborzati jellegek, de egy lankás dombsági területből ne készítsünk magashegységet és fordítva se!

Tile resolution: A modellt csempékre (tile-okra) bontva rendereli a program és jeleníti meg. Tulajdonképpen itt lehet beállítani a modell felbontását. Minél finomabb, annál erőforrásigényesebb a folyamat (erős gépeken nem probléma, a régebbi kevesebb memóriával és gyengébb videókártyával rendelkező gépeknél kell vigyázni, mert lefagyhat a program). 16px azt jelenti, hogy 16×16 pixel egy csempe felbontása.

Minél kisebb a felbontás, annál jobban látszanak az egyes tile-ok közötti rések hegységi területeken. A finomítással ez elkerülhető.

Skirt height: Néha kis repedések láthatók az egyes csempék között. Ha növeljük ezt az értéket, akkor egy vertikális falat fog hozzáadni a megadott szélességben, hogy eltűnjenek ezek a szakadások.

Max. screen error: Megadja azt a küszöbértéket, ahol az egyes csempéket egy nagyobb/kisebb felbontásúra kell kicserélni zoomoláskor. A kisebb szám több részletet jelez, növeli a renderelés komplexitását.

Max. ground error: A csempék felbontása, amelyeknél a csempéket újra osztjuk a következő nagyítási szinten egy részletesebbre. A kisebb érték mélyebb hierarchiát jelez, növeli a rendelerés komplexitását.

Show bounding boxes: Megmutatja 3D-ben az egyes csempék befoglaló téglatestét. (hibakereséshez)

Show Labels: mutatja a neveket.

Terrain Shading: Beállítható a felszín renderelése.

Shading disabled: A felszín színét a térképi textúra alapján határozza meg.

Shading enabled: A felszín színét a Phong árnyalási modell alapján határozza meg: figyelembe veszi a textúrát, a modell normál vektorát, a felszín anyagát, a környező és saját színét és a fényességet (visszatükröződést).

A Phong-féle árnyalási modellről: https://en.wikipedia.org/wiki/Phong_shading

Lights: 8 fényforrás adható hozzá:

ezek x,yz koordinátái, színe (color), intenzitása (intensity), attenuation (ezek csillapítása)

Az alábbi képe egy domborzatmodell 3D nézete látható.

Ezen a képen pedig a domborzatmodellre ráhúzott OpenStreetmap térkép látszik.

TIN interpoláció:

"A domborzatmodellezés korai szakaszában számos kutatás foglalkozott szabálytalan modelleken optimális háromszöghálózat szerkesztésével. Mára a Tom Poiker által kidolgozott TIN (Triangulated Irregular Network) módszer vált általánossá. Az ArcGIS is ezt alkalmazza. A TIN megszerkesztése a korábban tárgyalt Thiessen poligonok szerkesztése után egyszerűen elvégezhető, ha összekötjük mindazon pontokat, amelyek Thiessen poligonjai érintkeznek egymással. Bizonyítható, hogy ez a hálózat a lehető legzömökebb (az egyenlő oldalú háromszögekhez legközelebb álló) alakzatot adja.

Miután a globális TIN hálózat rendelkezésre áll, az interpoláció háromszögenként (lokálisan) egy-egy ferde síkkal történik." (Márkus, Térinformatika 11. Interpoláció és domborzatmodellezés)

Ajánlott

olvasmány:

https://regi.tankonyvtar.hu/hu/tartalom/tamop425/0027_TEI11/ch01s03.html

Feladat: hívjunk be a 24 pontot tartalmazó állományt, amelyben a magassag mező tartalmazza a pont Z koordinátáját (fiktív terület).

A Processing toolbox megnyitása után keressük meg az Interpolation szekciót \rightarrow TIN interpolation.

Input: Bemenet lehet pont és vonalas réteg.

Interpolation attribute: melyik mező alapján interpoláljunk (ez lehet Z koordináta is)

Vector layer zöld+ ->több vektoros réteg is figyelembe vehető. Most csak a pontokat használjuk, Type> point.

Interpolation method: linear: lineáris-> durva, szögletes felületet eredményez. Clough-Toucher (Cubic): görbékből álló felület.

Extent: itt a Calculate from layer->kiterjedése megadása

Output raster size!!!

Mekkora legyen a felbontás? Itt 100 méteres rácshálónál a 1-10 m között bármi lehet. Túl kicsi ne legyen, mert sokáig dolgozik a QGIS.

Interpolated: mentés helye.

2.5D Nézet a QGIS-ben

Ahogy a neve is mutatja, nem jön létre a 3D-s jelenet (3D View), csupán háromdimenziós hatású kétdimenziós nézetet generál a QGIS. Leginkább épületek megjelenítésénél használjuk. Aktiválása: Layer **Properties> Symbology>2.5D** Height: épület magassága, Angle: a szög, amerre az épületek dőlnek. Roof color, Wall color: tető, fal színe. Shadow: árnyék színe és mérete

Hátránya: lassan rendereli a nézetet.

Feladat: épületeket tartalmazó réteg 2.5 D-s megjelenítése a fentiek alapján.